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Abstract—Semantic segmentation of images requires an understanding of appearances of objects and their spatial relationships in

scenes. The fully convolutional network (FCN) has been successfully applied to recognize objects’ appearances, which are

represented with RGB channels. Images augmented with depth channels provide more understanding of the geometric information of

the scene in an image. In this paper, we present a multiple-branch neural network to utilize depth information to assist in the semantic

segmentation of images. Our approach splits the image into layers according to the “scene-scale”. We introduce the context-aware

receptive field (CARF), which provides better control of the relevant context information of learned features. Each branch of the network

is equipped with CARF to adaptively aggregate the context information of image regions, leading to a more focused domain that is

easier to learn. Furthermore, we propose a new zig-zag architecture to exchange information between the feature maps at different

levels, augmented by the CARFs of the backbone network and decoder network. With the flexible information propagation allowed by

our zig-zag network, we enrich the context information of feature maps for the segmentation. We show that the zig-zag network

achieves state-of-the-art performances on several public datasets.

Index Terms—RGB-D images, semantic segmentation, convolutional neural networks

Ç

1 INTRODUCTION

SEMANTIC image segmentation is a fundamental problem
in computer vision. It enables the pixel-wise categoriza-

tion of objects [1], [2] and scenes [3], [4]. Recently, deep con-
volutional neural networks (CNNs) [5], [6], [7] pre-trained
on large-scale image data have been adopted for semantic
segmentation [8], [9], [10], [11], [12]. The emergence of pow-
erful convolutional networks have significantly improved
the performances of semantic segmentation.

As depth data captured by low-cost sensors becomes
widespread, there is increasing research on leveraging it to
assist in semantic segmentation. Compared to color infor-
mation, depth data captures geometric information of
images, which is used to learn useful image representations.
To employ depth data for semantic segmentation, conven-
tional methods [8], [13], [14] associate it as an additional
channel to the RGB channels as input to networks. Recent
works [15], [16] have modeled the relationship between
depth and color modalities to improve segmentation.
Although depth data clearly helps to separate objects and
scenes, it has much less semantic information than col-
ors [15]. This motivates the search for better means to
exploit the depth to enhance semantic segmentation.

Instead of using depth data to extract semantic informa-
tion for segmenting images, we proposed a cascaded fea-
ture network (CFN) [17] that uses depth data to split the

image into layers representing similar scene-scale. We
referred to a scene-scale as the scale of objects and scenes
in general, as observed in the input images.1 As shown in
Fig. 1, there is correlation between depth and scene-scale;
smaller scene-scales appear in regions with greater depth,
and larger scene-scales appear in the near field. In smaller
scene-scale regions, objects and scenes densely coexist,
forming more complex correlation between objects and
scenes relative to larger scene-scale regions. To represent
the complex characteristics of smaller scene-scale regions,
we introduced context-aware receptive fields, which are
computed based on super-pixels determined by the under-
lying scene structures. We used small super-pixels to sub-
divide images, allowing the CFN to learn more focused
local characteristics of image regions. Then we propagated
the local information to small scene-scales, and employed
larger super-pixels to aggregate the local information as
the context feature map for complex characteristics. The
CFN [17] provides better control of the information propa-
gation between image regions at different scene-scales. It
avoids over diverse information for large scene-scales,
while providing distilled context information for smaller
scene-scales. In this paper, we further improve the CFN
and CARF from the two perspectives of resolution recov-
ery and region information adjustment.

Resolution Recovery. The fully convolutional network
(FCN) [18], [19] with multiple branches has been used to
generate distinct features for distinct regions of interest,
which are applicable to different scene-scales. Rather than
using independent branches that only influence the regions
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1. We assume the images have similar resolution, which can be
achieved in pre-processing.
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of the corresponding scene-scales, CFN [17] employs a cas-
caded architecture to enable communication between
branches. However, this architecture is built on top of the
highest-level convolutional feature map of the FCN, which
has the lowest resolution and losses visual details. The prev-
alent methods [20], [21], [22], [23] have used the decoder
architecture to compute high-resolution feature maps. The
decoder progressively adds high-level feature maps to low-
level feature maps, propagating the semantic information to
the image regions with richer details. However, the conven-
tional decoder architecture does not feed low-level feature
maps back to high-level feature maps to learn better seman-
tic information. This is essential to relatively small scene-
scales that requires visual details of scenes/objects.

Region Information Adjustment. To compute the represen-
tation of object/scene relationships, numerous segment-
ation networks [10], [11], [20], [21], [24], [25] have enriched
the context information of convolutional features using a set
of regular receptive fields, which are context-oblivious
in the sense that they do not consider their extent with
respect to the underlying image structure. We previously
proposed the CARF [17] to compute the context feature for
super-pixels separately. However, it does not adjust the
information propagation between different super-pixels.
Existing methods [26], [27], [28] adaptively combine adja-
cent super-pixels based on their relationship, which is
computationally efficient. Nevertheless, the information
propagation [17], [26], [27], [28] is guided by the pairwise
relationship between adjacent super-pixels, regardless of
high-order relationships for richer context information.
Most works [14], [17], [26], [27], [28], [29] have neglected the
problematic super-pixels, which inevitably involve noisy
regions in partitions of objects/scenes.

Our Approach. We address the above two problems in the
context of RGB-D image segmentation. First, we present a
zig-zag network to connect the backbone and decoder archi-
tectures, which, as shown in Fig. 2, produce convolutional
feature maps at different levels. At adjacent levels, we input
the low-level feature maps of the backbone architectures,
along with the relatively higher-level augmented feature
maps of the decoder architectures, to the zig-zag architec-
ture. The zig-zag architecture has multiple branches
equipped with CARFs, to compute context feature maps
based on the input feature maps. As we show in Fig. 2, the
zig-zag architecture enables communication between the
backbone and decoder architectures. It allows the low- and

high-level feature maps to exchange context information,
constructing richer context information for all scene-scales.

Second, we propose a two-stage weighting scheme for
the CARF to adjust the information propagation between
super-pixels. In the first stage, the local weighting learns the
weights for receptive fields within the same super-pixel. It
adjusts the importance of each receptive field, selecting the
useful information. We show that local weighting alleviates
the negative effect of imperfect super-pixels for constructing
context feature maps. In the second stage, the high-order
weighting enables information propagation between super-
pixels. To construct high-order context feature maps, we fol-
low the previous methods [26], [27], [28] to weight adjacent
super-pixels to save test time. Here, the network learns local
and high-order weights with respect to the context of
objects/scenes.

We show that our network enriches the context informa-
tion and enhances the overall performance. The zig-zag
network’s performance is demonstrated on two public data-
sets for semantic segmentation on RGB-D images. Our
method achieves the mean intersection-over-union (IoU)
values of 51.2 on the NYUDv2 dataset [30] and 51.8 on the
SUN-RGBD dataset [31]. We evaluate the performance of
CARF on two datasets for the general segmentation task.
Using state-of-the-art methods along with CARF, we
achieve consistent improvement on the PASCAL VOC
2012 [1] and the Cityscapes test sets [4].

This manuscript extends its ICCV version [17] as summa-
rized below:

� We use a new zig-zag architecture to connect
backbone and decoder architectures to yield high-
resolution feature maps, which contain rich context
information for different scene-scales.

� We apply a two-stage weighting scheme to the
CARF to provide the local and high-order context
information.

� We conduct more comprehensive studies to evaluate
our model.

In Section 2, we revisit related works on semantic seg-
mentation of RGB-D images. In Sections 3, 4 and 5, we pres-
ent our zig-zag architecture, two-stage weighting scheme
for CARF and details of their implementation. In Section 6,
we conduct ablation studies to evaluate our model, and
compare our model with state-of-the-art methods. We pro-
vide our conclusions in Section 7.

2 RELATED WORK

FCN for Semantic Segmentation. FCNs [8] have been broadly
used in semantic segmentation systems [9], [10], [11], [20],
[21], [25], [32]. FCNs have stacked down-sampling opera-
tions to compute feature maps containing high-level
semantic information. However, down-sampling operations
inevitably reduce the image resolution, resulting in segmen-
tation information loss on image regions. Some works have
addressed this problem. Yu et al. [33] and Chen et al. [9]
applied the atrous convolution to maintain relatively high-
resolution information, which requires substantial memory
space. Noh et al. [34], Badrinarayanan et al. [35] and Ghiasi
et al. [36] used deconvolution and unpooling to increase the

Fig. 1. Correlation between depth and scene-scale: the near field
(highlighted in blue rectangle) consists of a large scene-scale, while the
far field (highlighted in red rectangle) has a small scene-scale.
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resolution of convolutional feature maps that have fewer
feature channels, e.g., the last convolutional feature maps of
VGG-16 [6] and ResNet-101 [7]. However, these methods
cannot reuse the high-resolution feature maps, which pro-
vide object details for segmentation. Recent works [20], [22],
[37], [38] have used the encoder-decoder (ED) architecture
to gradually propagate the semantic information of low-
resolution feature maps to shallower network layers, produc-
ing high-resolution featuremapswith richer information.

Context information of multiple receptive fields is used
as well to alleviate problematic prediction. Several stud-
ies [9], [10], [11], [25] have integrated graphical models to
capture the context of multiple pixels. From another per-
spective, Lin et al. [20], Zhao et al. [21] and Chen et al. [22]
utilized convolutional/pooling kernels of diverse sizes to
construct spatial pyramid (SP) architecture, which captures
different receptive fields of images to effectively enrich the
context information. Chen et al. [23] further used the ED
architecture along with different atrous convolutions to pro-
duce high-resolution feature maps having rich context infor-
mation. However, the traditional decoder architecture [20],

[22], [37], [38] is incapable of capturing the context of image
regions in different scene-scales. This problem is addressed
in our paper.

Our method also makes use of the convolutional features
extracted from receptive fields of different sizes. In contrast
to [20], [21], [22], [23], which used regular kernels, we con-
trol the size of super-pixels to capture receptive fields,
which are more aware of the relationships between image
regions. Similarly, super-pixels were used in [14], [26], [28],
[32] to group the convolutional features from a set of recep-
tive fields. Different from our method, these studies do not
use the relationship of a wider range of super-pixels to con-
struct context feature maps.

Semantic Segmentation of RGB-D Images. Semantic seg-
mentation of RGB-D images has been studied for more than
a decade [13], [14], [15], [30], [39]. Different from traditional
semantic segmentation of RGB images [1], [3], [4], an addi-
tional depth channel is available now, which provides a bet-
ter understanding of the geometric information of the scene
images. Many prior studies have harnessed useful informa-
tion from the depth channel. Silberman et al. [30] proposed

Fig. 2. Overview of our network. Given a color image, we use CNN to compute the convolutional feature maps. These are passed to the zig-zag archi-
tectures, which gradually recover their resolutions. Each zig-zag architecture has multiple branches. The discrete depth image is layered, where each
layer represents a scene-scale and is used to match the image regions to corresponding network branches. Each branch has the context-aware
receptive field (CARF), which produces context feature map to combine with the feature from an adjacent branch. The predictions of all branches are
merged to achieve the eventual segmentation result. Please see Fig. 3 for details of the CARF.
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an approach to parse the spatial characteristics, such as sup-
port relations, using the RGB image along with the depth
cue. Gupta et al. [39] used the depth image to construct a
geometric contour cue to benefit both object detection and
segmentation of RGB-D images.

CNN/FCN has been used recently to learn features from
depth to help in segmenting RGB-D images. Couprie
et al. [40] proposed to learn CNN using the combination of
RGB and depth image pairs such that the convolutional fea-
ture maintains depth information. Gupta et al. [13] and He
et al. [14] encoded the depth image as an HHA image [39],
which maintains each pixel’s horizontal disparity, height
above ground, and angle of the local surface normal. Net-
works trained on different modalities, e.g., RGB and HHA
images, were fused by Long et al. [8] to boost segmentation
accuracy. Compared to direct fusion of segmentation scores
as in [8], the network proposed by Wang et al. [15] produces
better segmentation results by harnessing deeper correla-
tion of RGB and depth image pairs.

There are works [29], [41], [42] using depth data to model
the 3D-spatial relationships of objects in a CNN/FCN. In
our scenario, depth information plays a more significant
role in guiding feature learning for the regions of different
scene-scales. The depth image is layered to identify the
scene-scale of the region. An effective design of a neural net-
work structure is thus facilitated to consider the characteris-
tic of the region in a specific scene-scale. This technique can
be applied to benefit feature learning from different data
modalities, as shown in the results.

3 ZIG-ZAG NETWORK

To compute the high-resolution feature map for semantic
segmentation of RGB-D images, we present a zig-zag net-
work to incorporate the backbone architecture [17] and
decoder architecture [23]. Fig. 2 provides an overview of the
zig-zag network. Initially, we use the backbone FCN to
extract convolutional feature maps at different levels (see
the gray blocks in Fig. 2). At adjacent levels, we feed the
backbone feature maps and the higher-level augmented fea-
ture maps (see the purple blocks in Fig. 2) to the zig-zag
architecture. The zig-zag architecture has CARF to process
the backbone feature maps and the augmented feature
maps, and use a decoder architecture to yield higher-
resolution augmented feature maps. The highest-resolution
augmented feature maps are used for the segmentation task.

As shown in Fig. 2, the backbone architecture has multi-
ple branches to process the backbone feature maps at the
lth level. Each branch is equipped with a CARF. Along the
horizontal direction, the CARFs take the backbone feature
maps as input, producing context feature maps (orange
blocks in Fig. 2) at different scene-scales. We use context fea-
ture maps to produce augmented feature maps (green
blocks in Fig. 2), which are fed to the decoder architecture.
Along the vertical direction, the decoder architecture has
another set of branches equipped with CARFs. It computes
higher-resolution context feature maps, based on the aug-
mented feature map (smaller purple blocks in Fig. 2) at the
ðlþ 1Þth level. The decoder architecture combines the
higher-resolution context feature maps with the augmented
feature maps of the backbone architecture, yielding the

higher-resolution augmented feature map (larger purple
blocks in Fig. 2) at the lth level. At the kth scene-scale, we
pass the augmented feature maps of the decoder architec-
ture to the ðkþ 1Þth branch of the backbone architecture,
enriching the context information for the ðkþ 1Þth scene-
scale. Note that here the backbone and decoder architectures
exchange augmented feature maps in a zig-zag manner,
strengthening the context information for all scene-scales.

More formally, given a color image I 2 RH�W�3 as input
of the backbone FCN, we compute the backbone feature
maps fBljl ¼ 1; :::; Lg. For the feature map Bl 2 RH�W�C ,
we use a K-branch structure to construct context feature
maps fQl;kjk ¼ 1; :::;Kg, where Ql;k 2 RH�W�C . Note that
the 1st branch is for the largest scene-scale. Given a depth
image D 2 RH�W , we project each pixel to one of the K
branches. Each branch deals with a set of pixels that have
depth values within a certain range. As illustrated in Fig. 2,
the kth branch outputs the feature map Fl;k 2 RH�W�C as:

Fl;k ¼ Ul;k�1 þQl;k; k ¼ 1; :::; K; (1)

where Ul;k�1 2 RH�W�C denotes the augmented feature map
at the lth level. We set Ul;0 ¼ 0. The augmented feature map
Fl;k is in a combination form, which is modeled by summing
the augmented feature map Ul;k�1 and the context feature
map Ql;k. Note that Ul;k�1 contains the high-level semantic
context information for enhancing Fl;k. At the lth level, we
compute augmented feature maps fFl;kjk ¼ 1; :::; Kg for K
scene-scales.

As shown in Fig. 2, the decoder architecture also has
CARFs to compute the context feature maps fQ0lþ1;kjk ¼
1; :::; Kg. We sum the augmented feature map Fl;k and the
higher-level context feature map Q0lþ1;k 2 RH�W�C , yielding
a new feature map Ul;k 2 RH�W�C as:

Ul;k ¼ Fl;k þQ0lþ1;k; l ¼ 1; :::; L: (2)

Here, Ul;k is influenced by Fl;k having lower-level informa-
tion. We compute the context feature maps Q0lþ1;k based on
the high-level feature maps Ulþ1 2 RH�W�C denoted as:

Ulþ1 ¼
XK

k¼1
Ulþ1;k: (3)

We set ULþ1 ¼ 0 and therefore UL;k ¼ FL;k. We apply decon-
volutional kernels to enlarge the resolution of Ulþ1 before
computing Q0lþ1;k. Note that the feature map Ulþ1 aggregates
information of all scene-scales. With CARFs, the high-level
semantic information can be propagated to all of the net-
work branches for different scene-scales.

Finally, the feature map U1;k is fed to the predictor for
segmentation. Given all the pixels assigned to the kth scene-
scale, we denote their class labels as a set yk, which is deter-
mined as:

yk ¼ fðU1;kÞ: (4)

The function fð:Þ is the softmax predictor widely used for
pixel-wise categorization. We denote the class label of the
pixel at location ðx; yÞ as ykðx; yÞ. Combining the prediction
results of all of the branches forms the final segmentation y
on the image I.
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Next, we elaborate on the CARF for computing context
feature maps. For clarity, we omit the notations l and k from
this point onward.

4 CONTEXT-AWARE RECEPTIVE FIELD

The receptive fields of common networks are pre-defined.
Here,we present a CARFwhere the receptive field is spatially-
variant and its extent is defined according to the local and
high-order context. The idea is to aggregate convolutional fea-
tures into richer features that better learn the relevant content.

The context information generated by the CARF is con-
trolled by adjusting the sizes of the super-pixels. For regions
of low scene-scale, we choose larger super-pixels that
include more object and scene information, while at a higher
scene-scale, we choose finer super-pixels to avoid too much
diverse information; see also Fig. 3a. The adaptive size of
the super-pixels helps capture the complex object/scene
relationships in different regions. The relevant context com-
prises the neighborhoods of a super-pixel as shown in
Fig. 3d; i.e., a neuron Qðx; y; cÞ in the feature map Q is an
aggregation of all the receptive fields within the super-pixel,
which contains ðx; yÞ and its adjacent super-pixels.

Our CARF encodes the local and high-order context
information provided by super-pixels into augmented fea-
ture maps. We use a two-stage weighting scheme to com-
pute CARFs, as discussed below.

Local Weighting. Given an image I, we utilize the tool-
kit [43] to generate a set of non-overlapping super-pixels
denoted as fSig, satisfying

S
iSi ¼ I and Si

T
Sj ¼ ? , 8i; j.

As shown in Figs. 3b and 3c, at the first stage, we augment
on the neurons residing in the same super-pixel. This local
augmentation produces a feature map M 2 RH�W�C , where
the neuronMðx; y; cÞ 2 R is formulated as:

Mðx; y; cÞ ¼ wlðx; y; cÞ � Bðx; y; cÞ; (5)

where B is the backbone feature map. The local weight map
wl 2 RH�W�C is computed as:

wlðx; yÞ ¼ sðW � ½Bðx; yÞ; Bi�Þ; (6)

where ðx; yÞ 2 FðSiÞ. The spatial coordinate ðx; yÞ uniquely
corresponds to a center of the regular receptive field in the
image space. Thus, FðSiÞ defines a set of centers of regular
receptive fields that are located within the super-pixel Si. W
represents a set of 1� 1 convolutional kernels. s is the sig-
moid activation function. ½�; �� represents the concatenation
operation. Bi 2 RC aggregates the neurons residing in the
same super-pixel Si. It is formulated as:

BiðcÞ ¼
X

ðx;yÞ2FðSiÞ
Bðx; y; cÞ: (7)

In Eq. (7), the feature Bi represents the overall prop-
erty of Si. As formulated in Eq. (6), the neurons residing
in Si are combined with Bi. With this, each neuron per-
ceives the information of other neurons in Si. The com-
bined feature is used to learn the weight map wl that
accounts for the relationship between neurons in the
same super-pixel. In Eq. (5), wl adjusts the neurons of
the feature map B, selecting useful information for the
high-order weighting process.

High-Order Weighting. At the second stage (see Figs. 3c
and 3d), we aggregate the features of M that are associated
with adjacent super-pixels to model a new feature map

Q 2 RC�H�W :

Qðx; y; cÞ ¼ wh
i ðcÞ �Mðx; y; cÞ

þ
X

Sj2NðSiÞ
wh

j ðcÞ �
X

ðx0;y0Þ2FðSjÞ

Mðx0; y0; cÞ
jFðSjÞj ;

(8)

Fig. 3. Two-stage weighting scheme of CARF: (a) image partitioned into super-pixels with different sizes; (b) each neuron of the convolutional feature
map is augmented by local weighting, which uses the information of neurons residing in the same super-pixel; (c) after local weighting, the neurons
residing in each super-pixel are augmented; (d) each neuron is further augmented by high-order weighting, which uses the content of adjacent
super-pixels, to form the context feature map. The two-stage weighting is repeatedly applied to the images partitioned by super-pixels of diverse
sizes. Note that the feature map has smaller resolution than the image due to down-sampling of the network.
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where ðx; yÞ 2 FðSiÞ. Here Sj 2 NðSiÞmeans that the super-

pixel Si and Sj are adjacent. In Eq. (8), wh
i 2 RC is the weight

for Si. We compute wh
i as:

wh
i ðcÞ ¼ �i �

X

ðx;yÞ2FðSiÞ

whðx; y; cÞ
jFðSiÞj : (9)

We apply successive convolutional operations on the feature

map M to compute the high-order weight map

wh 2 RH�W�C . In this way, we learn the high-order weight

map from awide range of image regions, rather than the pair

of adjacent super-pixels. jFðSiÞj denotes the numbers of reg-

ular receptive field centers locatedwithin the super-pixel Si.

In Eq. (8), wh
i controls the information of Mðx; y; cÞ resid-

ing at Si, and is used to construct Qðx; y; cÞ. Qðx; y; cÞ has
access to the information of the adjacent super-pixels that
are adapted by the high-order weight map. It forms the con-
text feature map used below where each neuron Qðx; y; cÞ
represents a CARF.

5 IMPLEMENTATION DETAILS

Preparation of Image Data. The original RGB images are used
as a data source. In addition, we encode each single-channel
depth image as a three-channel HHA image [13], [39],
which maintains the geometric information of the pixels.
The sets of RGB and HHA images are used to train segmen-
tation networks. When preparing the images for network
training, we use the four common strategies of flipping,
cropping, scaling and rotating to augment the training data.

CARF Settings. The number of scene-scales is pre-defined
before using CARFs. We obtain the global range of depth
value from all of the depth maps provided by the datasets.
For example, the depth value of the NYUDv2 dataset varies
from 0 to 102.7 meters. The global range is then divided by
the number of branches. Each pixel in the image is assigned
to the corresponding scene-scale with respect to its depth
value. The super-pixels are controllable in our CARF com-
ponents. For lower scene-scale, the CARF uses larger super-
pixels to capture richer context information. Following this
principle, we use larger sizes to broaden the super-pixels.
On average, it takes about 3 seconds to compute super-
pixels for each image.

Zig-Zag Network Construction. We use four TITAN XP dis-
play cards, each with 12 GB memory, as the main devices
for all experiments. We modify the Caffe platform [44] to
construct our network, which is based on FCN [8]. The net-
work structure, which has been pre-trained on Image-
Net [45], i.e., ResNet-101 [7], serve as the backbone
architecture on which we build our zig-zag network. Specif-
ically, we use the ResNet-101 network layers res2, res3, res4
and res5 as fB1; B2; B3; B4g, which are applied with the zig-
zag network to produce the high-resolution feature map.
The ResNet-101 network is used for internal study of our
zig-zag network. For comparisons with state-of-the-art
methods, we use the deeper ResNet-152 [7] to improve seg-
mentation. Given the pre-computed super-pixels, it takes
about 35 ms/image to train the network. Given the trained
network, we need about 3.023 seconds to test an image.
Note that the testing time is contributed by the computation

of super-pixels (about 3 seconds/image) and forward prop-
agation of the network (about 23 ms/image).

We optimize the segmentation network using the stan-
dard SGD solver. The network is fine-tuned with a learning
rate of 1e-10 for 80K mini-batches. After that, we decay the
learning rate to 1e-11 for the next 50K mini-batches. The
size of each mini-batch is set to 8 by default. As suggested
in [8], we use a heavy momentum of 0.99 to achieve stable
optimization on relatively small-scale data.

6 RESULTS AND EVALUATION

To show the efficacy of the zig-zag network and evaluate its
performance, we test it on two public datasets: NYUDv2 [30]
and SUN-RGBD [31]. The NYUDv2 dataset is more widely
used for analysis. We therefore conduct most of our evaluation
on it,while using the SUN-RGBDdataset to extend the compar-
ison to state-of-the-art methods. Our CARF is applicable to an
array of networks for general segmentation tasks, and thus we
further study the effect on segmentation accuracy by using the
CARF along with different networks. We evaluate the results
on the PASCALVOC2012 [1] andCityscapes test sets [4].

The NYUDv2 dataset [30] contains 1,449 RGB-D scene
images. Among them, 795 images were split for training
and 654 images for testing. In [13], a validation set of 414
images, was selected from the original training set. We fol-
low the segmentation annotations provided in [39], where
all of the pixels are labeled by 40 classes.

Following the common way of evaluating semantic seg-
mentation schemes [20], [21], we perform multi-scale test-
ing. Four scales f0:6; 0:8; 1; 1:1g are used to resize the testing
image before feeding it to the network. The output scores of
the four re-scaled images are then averaged for the final pre-
diction. We report on the semantic segmentation perfor-
mance in terms of pixel accuracy, mean accuracy and mean
intersection-over-union (IoU).

Sensitivities to Partitions of Depth and Color Images. We
examine the effect on segmentation accuracy by controlling
the number of network branches. We experiment with dif-
ferent numbers f1; 2; 3; 4; 5; 6g, where each number is used
to partition depth images into different levels. The input to
the zig-zag network includes the RGB image for segmenta-
tion and the partitioned depth image for splitting image
regions for different branches. We empirically set the sizes
of super-pixels as 1600, 3000, 4200, 6000, 10000 and 12000
for the six applicable branches. For each number of
branches, we report the segmentation accuracy on the
NYUDv2 validation set in Fig. 4a.

We note that the single-branch zig-zag network achieved
a lower score than the scores of other networks having two
or more branches. As only one CARF is used in the single-
branch network, specific context feature maps can not be
achieved for different scene-scales. We find that three-
branch zig-zag network achieved the best result. We also
observe that further increasing the number of branches, e.g.,
using four-, five- or six-branch networks, causes a perfor-
mance drop. In these cases, larger super-pixels are used.
This suggests that too large super-pixels are not suitable to
use, as they may overly diversify the object/scene classes
and lose focus on the stable patterns that should be learned
by the zig-zag network.
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We investigate the sensitivity to different partitions of
color images. This is done by controlling the sizes of super-
pixels. Again, we experiment with zig-zag networks with
different numbers of branches. We apply the standard sizes
of super-pixels {1600, 3000, 4200, 6000, 10000, 12000} to the
applicable network branches. For each branch, we use dif-
ferent scales {0.6, 0.8, 1.0, 1.2, 1.4, 1.6} to resize the super-
pixels. With various sizes of super-pixels, we report the seg-
mentation scores of different networks (see Fig. 4b).

By increasing the scale, we enlarge the super-pixels for
each network branch. As shown in Fig. 4b, a larger scale
generally improves the performances of all networks. This
is because the high-order weighting of the CARF can use
the larger super-pixels to enrich the context information.
We also find that a too large scale degrades the perfor-
mance. We note that a larger super-pixel includes more
receptive fields. However, too many receptive fields form
complex relationships, which are difficult to learn by the
local weighting of the CARF for producing useful
information.

According to the validation results shown above, we use
a three-branch zig-zag network and the standard sizes of
super-pixels (1600, 3000, 4200) by default in the following
experiments.

Ablation Study of Two-Stage Weighting. The CARF defines
the adaptive extent of the receptive field and plays a critical
role in adjusting the context information for different scene-
scales. We use the local and high-order weighting to
compute the CARF. Below, various key components of the
weighting scheme are removed to examine the effect on
the segmentation performance. The results are shown
in Table 1.

In the first case, we remove the local and high-order
weights. This means that the CARF degraded to the version
proposed in [17], which achieves a segmentation score of
43.8 IoU. By adding local weights, we enable the selection of
information for each super-pixel, increasing the segmenta-
tion score to 44.6 IoU. Furthermore, we use the high-order
weighting scheme to construct the context feature map. The
full weighting scheme achieves a segmentation score of 47.8
IoU, which outperforms the CARF without two-stage
weighting by a margin of 4 points.

Similar to the use of various sizes of super-pixels in the
CARF, stacking multiple two-stage weighting layers also
change the extent of the receptive field. In Fig. 5, we com-
pare the segmentation accuracy of using different numbers
of two-stage weighting layers. Here, we use the three-
branch network along with the standard sizes of super-
pixels (1600, 3000, 4200). Again, we use different scales {0.6,
0.8, 1.0, 1.2, 1.4, 1.6} to resize the super-pixels for each
branch. Given small scales (0.6 and 0.8) of super-pixels,
using two or three layers of two-stage weighting slightly
improves the segmentation accuracy. However, we note
that multiple layers produce more feature maps at the cost
of extra computation time and storage space. When using
relatively larger scales (1.0, 1.2, 1.4 and 1.6), we find that
multiple layers lead to negligible improvement, and even
performance degradation. This is because large super-pixels
and multiple layers significantly enlarge the receptive fields,
which contain complex information.

Fig. 4. Sensitivities to the number of branches (a) and the scale of super-pixels (b). Performances are evaluated on the NYUDv2 validation set.
Segmentation accuracy is reported in terms of IoU (%).

TABLE 1
Ablation Experiments of Using Local and High-Order

Weighting Schemes for Computing CARFs

local high-order pixel acc. mean acc. IoU

69.7 53.3 43.8
@ 71.1 54.5 44.6
@ @ 73.4 57.5 47.8

Performances are evaluated on the NYUDv2 validation set. Segmentation
accuracy is reported in terms of pixel accuracy, mean accuracy and IoU (%).

Fig. 5. Sensitivity to the number of two-stage weighting layers.
Performances are evaluated on the NYUDv2 validation set. Segmentation
accuracy is reported in terms of IoU (%).
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Comparisons of Context Representations. We compare differ-
ent context representations in Table 2. The CARF uses super-
pixels to aggregate receptive fields for the context feature
map. However, other researchers [9], [11] have constructed
the context feature map without super-pixels. Without the
CARF, we follow Chen et al. [9] in the use of a conditional
random field (CRF) to process the segmentation score map
output by the network, leading to 38.6 IoU. Zheng et al. [11]
used RNN to model CRF, which enriches the context infor-
mation of convolutional feature maps. By replacing the
CARF with RNN to construct the context feature map, we
achieve a segmentation score of 40.1 IoU. Zhao et al. [21] use
different pooling kernels to compute pyramid context feature
maps at different scales. We experiment with the pyramid
pooling method [21] in place of the CARF, where small/
large kernels were used for large/small scene-scales.
Although the pyramid pooling method accounts for multi-
scale context information, it achieves a lower segmentation
score of 43.5 IoU than our method. This shows that super-
pixels are important to enrich the context feature map.

Several studies [14], [17], [28] have proved that super-pixels
provide rich context information. To construct the context
representation, He et al. [14] used super-pixels independently.
Instead, Lin et al. [17] summed the adjacent super-pixels to
encode their relationship into the context feature map, achiev-
ing a better result (43.8 IoU) thanHe et al. [14] (40.3 IoU). Liang
et al. [28] used long short-term memory (LSTM) to model the
relationship between adjacent super-pixels. We adapt the
LSTM [28] in place of the CARF. Although LSTM yields a bet-
ter result (45.2 IoU) than Lin et al. [17], it requires much more
memory for hidden states. We extend the context representa-
tion in [17] with the two-stage weighting scheme. Our method
outperforms all of the compared methods. The performance
gap suggests that our methods provides more useful context
information for the segmentation task.

Note that the CARF produces context feature maps, which
can be used by different networks for the general segmenta-
tion task. We equip three widely-used segmentation net-
works, i.e., PSPNet [21], RefineNet [20] and DPCNet [46],
with CARFs. Without the depth image for separate network
branches, we sum the context feature maps output by differ-
ent branches of CARFs for segmentation. We evaluate these
networks on the PASCAL VOC 2012 [1] and the Cityscapes
datasets [4] (see Table 3). Compared to different baseline
models, the CARF generally yields improvement on the seg-
mentation accuracies. Especially, the CARF improves the
performance by 0.6–1.3 points on the PASCAL VOC 2012 test
set, and by 0.4–1.0 points on the Cityscapes test set. This dem-
onstrates that CARF is applicable to different networks for
achieving the performance gain on semantic segmentation.

TABLE 2
Strategies of Using the CARF, Evaluated on the

NYUDv2 Validation Set

strategy method pixel acc. mean acc. IoU

w/o super-pixel
Chen et al. [9] 66.0 49.0 38.6
Zheng et al. [11] 67.1 50.2 40.1
Zhao et al. [21] 69.2 52.8 43.5

w/ super-pixel

He et al. [14] 67.4 50.6 40.3
Lin et al. [17] 69.7 53.3 43.8
Liang et al. [28] 72.8 55.7 45.2

ours 73.4 57.5 47.8

Segmentation accuracy is reported in terms of pixel accuracy, mean accuracy
and IoU (%).

TABLE 3
Improvement with CARF

PASCAL VOC 2012 Cityscapes

val set test set val set test set

RefineNet [20] 82.7! 84.2 82.4! 83.7 71.5! 72.3 73.6! 74.6
PSPNet [21] 81.4! 83.3 85.4! 86.5 80.6! 81.1 81.2! 81.7
DPCNet [46] 84.2! 86.0 87.9! 88.5 80.9! 81.5 82.7! 83.1

Performances is evaluated on the PASCAL VOC 2012 [1] and the Cityscapes
datsets [4]. Segmentation accuracy is reported in terms of IoU (%).

Fig. 6. Sample of the comparison to state-of-the-art DPCNet [46] and
ours. Scene images are taken from the PASCAL VOC 2012 [1] (the first
four rows) and Cityscapes [4] (the last four rows) validation sets.

TABLE 4
Different Strategies of Propagating Context Information

scene-scale super-pixel performance

large small large small pixel acc. mean acc. IoU

  68.1 51.6 41.0
 ! 68.4 52.0 41.5
! ! 69.2 53.0 43.6
!  73.4 57.5 47.8

The arrows indicate the order of using scene-scales and super-pixels. Perform-
ances are evaluated on the NYUDv2 validation set. Segmentation accuracy is
reported in terms of pixel accuracy, mean accuracy and IoU (%).
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In Fig. 6, we provide the qualitative comparison on the PAS-
CAL VOC 2012 and Cityscapes validation sets.

We also experiment with using CRF to post-process the
segmentation results of baseline models. Compared to the
CARF that provides high-order context information, CRF
focus on the local context of adjacent pixels. Thus, CRF
achieves less improvement (0.02 – 0.13 points) on the PAS-
CAL VOC 2012 and Cityscapes test sets.

Strategies of Propagating Context Information. Given a
scene-scale, our zig-zag network gradually accumulates the
context feature maps produced by the branches at larger
scene-scales. Note that we use small super-pixels at large
scene-scales, and apply larger super-pixels at smaller scene-
scales. We achieve 47.8 IoU on the NYUDv2 validation set
(see Table 4). We further compare our zig-zag network to dif-
ferent strategies of propagating context information.

In the first strategy, we reverse the order by propagat-
ing context information from small scene-scales to larger
scene-scales. Here, we use small/large super-pixels at
small/large scene-sales. Compared to our zig-zag
network, we find that the performance significantly
degraded to 41.0 IoU. Without the focused local informa-
tion learned from large scene-scales, the context feature
maps at smaller scene-scales contain diverse information,
leading to the performance degradation. A similar per-
formance drop (41.5 IoU) takes place in the second case,
where we further reverse the order of super-pixels in the
first case. Again, the learning of context feature maps of
small scene-scales is not conditioned on the focused local
information.

We further experiment with the third case, where we fol-
low the zig-zag network to propagate information from a
large scene-scale to a small scene-scale. However, we use
the super-pixels in the opposite order, i.e., small/large
super-pixels for small/large scene-scales, as large super-
pixels include too diverse information at the beginning, and
has a negative impact on all context feature maps. It can be
clearly seen that the segmentation performance in the third
case lags far behind our zig-zag network.

Comparisons ofMulti-BranchNetworks. Our zig-zag network
connects the backbone and decoder architectures. It exploits
multiple branches to handle different scene-scales. In Table 5,
we evaluate the performance on segmentation and experi-
mentwith different configurations of network branches.

Following the CFN [17], we disable the decoder that pro-
duced the high-resolution feature map. It leads to a perfor-
mance drop of 7.2 points (see “w/o decoder” in Table 5),
compared to our full model. Next, we employ separate
branches (Fig. 7a) for different scene-scales. The backbone and
decoder architectures yield the augmented feature maps, com-
bining them for each scene-scale in an isolated way. Although
the CARF provides context information for each scene-scale,
the information propagation between branches is lacking.

TABLE 5
Different Multi-Branch Networks, Evaluated on

the NYUDv2 Validation Set

strategy method pixel acc. mean acc. IoU

w/o ZZNet

w/o decoder 67.8 51.2 40.6
separate branches 68.9 52.7 42.7
combined branches 70.5 54.0 44.1
cascaded branches 72.0 55.8 45.3

w/ ZZNet ours 73.4 57.5 47.8

Segmentation accuracy is reported in terms of pixel accuracy, mean accuracy
and IoU (%).

Fig. 7. The network can have (a) separate branches, (b) combined
branches, (c) cascaded branches or (d) zig-zag branches. In each sub-
figure, we illustrate the multiple branches of the backbone architecture
and omit the decoder with similar structure. For clarity, we illustrate it
with two branches only. Each network can be extended to have more
branches.

TABLE 6
Comparisons with Other State-of-the-Art Methods on the NYUDv2 Test Set

model RGB-input pixel acc. mean acc. IoU RGB-D-input pixel acc. mean acc. IoU

VGG-16
Long et al. [8] 60.0 42.2 29.2 Eigen et al. [47] 65.6 45.1 34.1
Kendall et al. [48] 68.0 45.8 32.4 He et al. [14] 70.1 53.8 40.1
Lin et al. [25] 70.0 53.6 40.6 Lin et al. [17] 70.6 54.2 41.7

ResNet-101

Zhao et al. [21] 72.8 55.9 45.2 Lin et al. [20] 73.3 58.2 46.3
Lin et al. [20] 73.1 57.3 46.0 Lin et al. [17] 73.8 59.1 46.6

Lee et al. [49] 75.6 62.2 49.1
ours 75.8 62.3 49.3

ResNet-152

Lin et al. [20] 73.6 58.9 46.5 Lin et al. [20] 74.6 59.7 47.0
Lin et al. [17] 74.8 60.4 47.7
Lee et al. [49] 76.0 62.8 50.1
ours 77.0 64.0 51.2

Segmentation accuracy is reported in terms of pixel accuracy, mean accuracy and IoU (%).
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Thus the separate branches produce a lower score (see
“separate branches” in Table 5) than the zig-zag network.

The branches can be combined to segment images, as illus-
trated in Fig. 7b. With the combined branches, all of the scene-
scenes share the same context information. The low scene-
scales benefit from more global context information provided
by broader super-pixels.However,mixing overly complex con-
text information distracts the segmentation on relatively larger
scene-scales. See “combined branches” in Table 5.

We further compare the cascaded network [17] with our
zig-zag network, as illustrated in Fig. 7c and 7d. The cascaded
branches propagate information between adjacent scene-
scales. But it does not exchange information to assist in the
joint learning of feature maps at different levels, as compared
to our fullmodel. See “cascaded branches” in Table 5.

Comparisons with State-of-the-art Methods. In Table 6, we
compare our zig-zag network with state-of-the-art methods
that are also based on deep neural networks. According to

Fig. 8. Sample of the comparison to state-of-the-art models [17], [20] and ours. Scene images are taken from the NYUDv2 dataset [30].

TABLE 7
Class-Wise Semantic Segmentation Accuracy on the NYUDv2 Test Set

wall floor cabinet bed chair sofa table door window bkshelf

Lin et al. [17] 77.2 83.0 58.1 70.6 61.3 62.7 51.2 36.5 45.2 46.0
Lee et al. [49] 79.7 87.0 60.9 73.4 64.6 65.4 50.7 39.9 49.6 44.9
ours 80.5 87.6 63.0 72.3 63.9 68.7 51.1 37.6 52.1 44.7

picture counter blind desk shelf curtain dresser pillow mirror mat

Lin et al. [17] 57.3 64.8 64.7 23.3 10.9 54.1 50.0 44.2 51.4 38.2
Lee et al. [49] 61.2 67.1 63.9 28.6 14.2 59.7 49.0 49.9 54.3 39.4
ours 60.0 69.2 63.1 30.5 15.6 60.3 49.3 47.3 58.7 42.6

cloths ceiling books refridg tv paper towel shower box board

Lin et al. [17] 24.1 65.3 31.8 56.4 60.0 31.6 41.8 34.0 13.1 50.8
Lee et al. [49] 26.9 69.1 35.0 58.9 63.8 34.1 41.6 38.5 11.6 54.0
ours 30.4 70.0 37.8 56.2 67.1 32.5 44.2 39.1 12.5 52.6

person stand toilet sink lamp bathtub bag othstr othfurn othprop

Lin et al. [17] 77.5 42.8 61.5 65.7 41.9 53.5 22.6 26.5 16.4 37.0
Lee et al. [49] 80.0 45.3 65.7 62.1 47.1 57.3 19.1 30.7 20.6 39.0
ours 82.6 47.1 68.2 63.8 45.2 61.4 21.5 34.7 18.3 44.8

Segmentation accuracy is reported in terms of IoU (%).
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the training and testing data, the compared methods are
divided into two groups. All the methods are evaluated on
the NYUDv2 test set.

In the first group, the methods use only RGB images for
segmentation. The RGB-input column of Table 6 shows the
performances of these methods. We find that the deep net-
work proposed by Lin et al. [20] achieves the best accuracy in
this group. This network is based on ResNet-152 [7], which is
much deeper than the previous methods [8], [25], [48] using
VGG-16 [6] and ResNet-152 [7]. It suggests that using a deeper
network can improve segmentation accuracy.

In the second group, the methods take both RGB and
depth images as input. The performances are shown in the
RGB-D-input column of Table 6. We note that each depth
image can be encoded as a three-channel HHA image,

which maintains richer geometric information as shown
in [13], [39]. Following Long et al. [8], we used HHA
images in place of RGB images to train the segmentation
network. Given an image, a segmentation network trained
on HHA images was used to compute a score map, which
is fused with the score map derived from the network
trained on RGB images. The fusion strategy is imple-
mented by averaging the score maps. Compared to the net-
work [20], [21] that uses RGB images only, the network
using both RGB and HHA images improves the segmenta-
tion accuracy. As the comparison between network struc-
tures are based on the same backbones (e.g., ResNet-101
and ResNet-152), we conclude that the performance gap
is solely attributed to using HHA images for assisting
segmentation.

TABLE 8
Comparisons with Other State-of-the-Art Methods on the SUN-RGBD Test Set

model RGB-input pixel acc. mean acc. IoU RGB-D-input pixel acc. mean acc. IoU

VGG-16
Chen et al. [9] 69.7 43.6 27.4 Long et al. [8] 74.3 47.3 35.1
Kendall et al. [48] 71.2 45.9 30.7 Hazirbas et al. [50] 76.6 48.5 37.8

ResNet-101
Zhao et al. [21] 78.6 55.3 44.6 Lin et al. [20] 80.7 58.9 46.5
Lin et al. [20] 80.4 57.8 45.7 Lin et al. [17] 80.9 59.6 47.0

ours 82.7 61.3 48.6

ResNet-152

Lin et al. [20] 80.6 58.5 45.9 Lin et al. [20] 81.1 59.8 47.3
Lee et al. [49] 81.5 60.1 47.7
Lin et al. [17] 82.4 60.7 48.1
ours 84.7 62.9 51.8

Segmentation accuracy is reported in terms of pixel accuracy, mean accuracy and IoU (%).

Fig. 9. Sample of the comparison to state-of-the-art models [17], [20] and ours. Scene images are taken from the SUN-RGBD dataset [31].
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Our zig-zag network belongs to the second group. We
use RGB and HHA images for training and testing. The
zig-zag network based on ResNet-101 achieves an IoU of
49.3. We further use a deeper ResNet-152 [7] backbone net-
work, and achieve a 51.2 IoU. This result is better than
state-of-the-art methods. The previous best result was
achieved by RDFNet [49]. Based on the same ResNet-152
backbone, RDFNet [49] requires to learn about 218 million
parameters. In comparison, our method contains about 206
million learnable parameters. This means that RDFNet has
a more complex model architecture than our zig-zag net-
work. In Fig. 8, we show the visual improvement against
the state-of-the-art models [17], [20]. This comparison
demonstrates that our zig-zag network is compatible with
different network structures and improves segmentation
accuracy. We provide the accuracies of individual classes
in Table 7. Compared to the state-of-the-art methods [17],
[49], our zig-zag network achieves better results for most
of the classes.

Experiments on SUN-RGBD Dataset. We conduct more
experiments on the SUN-RGBD dataset [31], which com-
prises 10,335 images labeled with 37 classes. We use 5,285
images for training and the rest for evaluation. The SUN-
RGBD dataset provides more images than the NYUDv2
dataset [30]. It thus can verify whether our method could
effectively handle more diverse scene and depth conditions.

We show the segmentation accuracy of our method in
Table 8. Again, the compared methods are divided into two
groups. Similar to the previous experiments, we compare
our method to the group of methods that consider both RGB
and HHA images as input. With a ResNet-152 model trained
on RGB and HHA images, the previous best performance
was produced by the method of Lin et al. [17]. Using the
same model and data, our method yields a better IoU of
51.8, which outperforms the previous best result by a margin
of 3.7. The visualization results of our method on the SUN-
RGBD dataset [31] can be found in Fig. 9. The accuracies of
individual classes are provided in Table 9. Our zig-zag net-
work outperforms other methods in most of the classes.

7 CONCLUSIONS

Recent developments in semantic segmentation of images
have leveraged the power of convolutional networks that
are trained on large datasets. In our work, we use depth
information to provide more understanding of the geomet-
ric relationship between scenes/objects. It helps to produce
features with richer context information for the appropriate
scene-scale. We have also presented a zig-zag network to
construct context feature maps at different levels. The zig-
zag network exchanges useful information between feature
maps. It enables flexible modeling of the data with a good
balance between image regions in different scene-scales.
Our method outperforms recent state-of-the-art methods.
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Lin et al. [17] 50.2 19.8 72.1 66.8 40.3 50.5 35.4
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Segmentation accuracy is reported in terms of IoU (%).
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