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A B S T R A C T

Detecting fine-grained changes among a set of images taken at different times is a challenging problem, which is
important for the applications such as high-value scene monitoring and structural inspection. Existing methods
use a geometry registration and lighting compensation pipeline to alleviate the ingredients that affect change
detection. However, lighting compensation may introduce a lot of artifacts, e.g., inaccurate local lighting
conditions and fine-grained change disappearance. The distortion introduced by general registration methods
also makes the process of lighting correction more challenging. To solve these problems, in this paper, we
propose a new phase-based change detection method, called as pb-FGCD, which first aligns two observation
of different times and then extract structure information to handle lighting difference. Benefiting from the
proposed weighted amplitude filter and iterative alignment strategy, we could obtain a better registration
performance. The structure information extracts the lighting irrelevant components of an image and is more
sensitive to structure changes compared with the lighting compensation based method, which is vital for
detecting the changes with low intensity difference. Furthermore, we contribute a new change detection
dataset, which contains 100 groups of the real-world data of the ancient Mogao murals and the Terra-Cotta.
It is the first fine-grained change detection dataset focusing on the ancient mural. Our approach significantly
improves the accuracy by more than 190% higher F1-measure than the state-of-the-art methods.
1. Introduction

One important task in cultural heritage protection is to accurately
detect slow and subtle changes on the surface of culture heritage
relics, e.g., sculptures and murals, over time (months or years). This
fine-grained change detection of high-value objects is a challenging
task (Feng et al., 2015; Stent et al., 2016), as the example shown
in Fig. 1. First, it is difficult to restore the exact same location and
pose of the camera to take images at different times. This inevitably
leads to geometric differences, which usually appear with non-linear
distortion of the mural surface. Second, the images were often taken
under discrepant lighting conditions. Third, the object may have subtle
changes, such as cracking and shedding on the surface, which show
complex patterns due to the scene damage over time.

It should be noted that trivially computing the difference between
two images leads to the problematic change map (see Fig. 1(d)), which
is very sensitive to object edges. Even if there is little difference
between viewpoints, the change map can be very sensitive to lighting
conditions at different periods (see Fig. 1(e)). Figs. 1(g-i) show the
detection results of state-of-the-art methods, among which Feng et al.
(2015) obtains a better result. The existing methods (Feng et al., 2015;
Stent et al., 2016) formulate the fine-grained change detection as a two-
stage task, which conduct geometry registration and lighting correction

∗ Corresponding author.
E-mail addresses: wangxuzhi@tju.edu.cn (X. Wang), lwan@tju.edu.cn (L. Wan), di.lin@tju.edu.cn (D. Lin), wfeng@tju.edu.cn (W. Feng).

to handle the above challenges. The detected changes are finally ob-
tained by the intensity difference of one image and the other adjusted
image. What is more, we notice that there is an inherent dilemma in the
process of lighting correction (Feng et al., 2015; Hou et al., 2021; Luan
et al., 2017). On one hand, we aim to compensate the lighting condition
of last observation to be the same as current observation. On the other
hand, these effects should not make the changes between two images
disappear. Especially, the general geometry registration methods may
introduce a lot of distortions in the fine-grained area, which makes the
lighting correction more challenging.

To address these problems, we propose a phase-based registration
method which can accurately manipulate subtle movements by adjust-
ing their phases in the frequency domain. We then extract structure
information in the frequency domain to handle lighting differences
between two observations of different times. Note that the structure in-
formation is more sensitive to structure changes compared with lighting
correction based method, which is vital for detecting the fine-grained
changes with low intensity difference. Many fine-grained changes in the
mural scene have low intensity changes as shown in Fig. 6.

The registration process of our method belongs to phase-based
methods (Davis et al., 2015, 2014; Elgharib et al., 2015; Meyer et al.,
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Fig. 1. A real case of fine-grained change detection of mural in the Mogao Grottoes.
2018; Takeda et al., 2018; Zhang et al., 2017). We first decompose
the input images into different scale and orientation subbands in the
frequency domain by applying the complex steerable pyramid. Each
subband contains two components, i.e. phase and amplitude. We then
adjust the phase of reference observation in different scale and orien-
tation subbands by the proposed weighted amplitude filter guided by
current observation. The above registration process runs in a recursive
way to improve the registration result. We next use the complex
steerable pyramid to extract phase congruency features, which is used
as image structure information that can handle lighting differences. At
last, we compare the structure information of the two observations of
different times to obtain the final change map. The contributions of this
paper are:

• We propose a novel and effective framework that conducts phase-
based registration and structure information extraction for fine-
grained change detection. To the best of our knowledge, it is the
first work that applies the phase-based method to fine-grained
change detection.

• We introduce weighted amplitude filter and iterative alignment
strategy which allows the phase-based method for accurate reg-
istration and change detail preservation. We extract structure
information to obtain change detection results in different light-
ing conditions. Our approach increases the F1-measure by more
than 190% over those state-of-the-art methods.

• We built a real-world dataset to benchmark fine-grained change
detection of misaligned scenes under varied lighting conditions of
the ancient mural and the Terra-Cotta, containing 100 scenes.

The rest of the paper is organized as follows. Section 2 reviews the
related works. The proposed method is introduced in Section 3. The
experimental results and analysis of the results are detailed in Section 4.
Section 5 draws the conclusions of the proposed method. We also give
the intuition for the phase-based method in Appendix.
2

2. Related work

2.1. Change detection

There are a number of methods developed for change detection,
including background models (Chen et al., 2017; Lin et al., 2017),
nonparametric models (Elgammal et al., 2000) and low rank mod-
els (Bouwmans et al., 2017), which is desirable in many applications
such as moving object detection (Lin et al., 2017), video surveil-
lance (Elgammal et al., 2000), video indexing (Chen et al., 2017; Gargi
et al., 2000; Urhan et al., 2006), to name a few. For instance, Lin et al.
(2017) proposed a method for detecting the changes caused by motion
based on attention mechanism. Bescos (Bescós, 2004) proposed a mod-
ule for video temporal segmentation which is able to detect both abrupt
transitions and all types of gradual transitions in real-time. Urhan et al.
(2006) proposed a change detection method for hard-cut of archive
film. They used phase-correlation to calculate the similarities between
consecutive frames, and low correlation indicates a candidate hard-cut.
PCA-K-Means (Celik, 2009) proposes a multitemporal satellite image
change detection method by principal component analysis and k-means
clustering. NPSG (Sun et al., 2021) proposes a change detection method
using similarity measurement. The basic idea of NPSG is to represents
the image structure by the nonlocal path similarity based graph and
compare the two representations for change detection.

Recently, convolutional neural networks methods have been devel-
oped for change detection. Nguyen et al. (2004) proposed a data-driven
method to detect changes related to object motion.

However, we have to note that CNN-based methods require a suf-
ficiently large training set. Although data augmentation (Zhao et al.,
2017), weakly supervised learning (Zhao et al., 2018), few-shot learn-
ing (Zhou et al., 2018) et al. do help, the existing fine-grained change
detection datasets of cultural heritage, are too small to train a network
on par with other change detection tasks. Below, we review the most
relevant works for fine-grained change detection.

Fine-grained change detection (FGCD) is different from video surv-
eillance, as it focuses on the fine-grained change of background (e.g.,
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the mural peeling and the color changes of the mural). Feng et al.
(2015) used the geometry correction (Liu et al., 2011), the lighting
differences (Barron & Malik, 2015) and the change mask to estimate the
result in a coarse-to-fine manner. It was the first work that focuses on
fine-grained change detection for high-value monitoring. These meth-
ods modeled the fine-grained change detection as a joint optimization
of the viewpoint variation, the photometric variation and the changes
in the scene. Stent et al.’s method (Stent et al., 2016) compensates
for the variations of the viewpoint, photometry and resolution/focal
setting, and effectively improves the performance of FGCD. Note that
these works heavily depend on the optical flow to reduce the effect of
different variations on the detection. But the interaction between the
lighting correction and the computation of optical flow, which were
done independently, easily led to artifacts of the final detection results.

In contrast to the existing methods, we develop a phase-based
scheme to address both geometric and photometric variations. We
exploit structure information, which is less sensitive to varying lighting
conditions, to achieve robust detection of subtle changes.

2.2. Phase-based methods

The phase-based methods have been used in many applications
(Davis et al., 2015, 2014; Elgharib et al., 2015; Meyer et al., 2018;
Takeda et al., 2018; Wang et al., 2022; Wu et al., 2012; Zhang et al.,
2017), which recognized the vibration of the object surface, or tackle
small movements (Meyer et al., 2015; Wadhwa et al., 2013). These
applications relied on the ability of the complex steerable pyramid
to manipulate subtle movements by adjusting their phase in a video
sequence.

For example, to enable larger amplification factors for the motion
magnification, Wadhwa et al. (2013) proposed a phase-based video
magnification method, in which they employed the complex-steerable
pyramid to decompose the image to obtain the phase variations of each
pixel. They encoded the motion information into the phase shift and
amplified the small movements. In these approaches (Davis et al., 2015;
Elgharib et al., 2015), the complex steerable pyramid was used for
extracting the local motion signal of the object surface. Meyer et al.
(2015) proposed a phase-based method for the frame interpolation of
the video. They reduced the phase variation to generate intermediate
frames, which provided smoother transitions between the interpolated
images.

We employ the phase-based scheme for aligning images. Different
from the video in which the appearances of the same object in different
frames are the same, the image pairs, which were captured in different
periods, can have locally different appearances. Although the interpo-
lation of the video frames can yield smooth motion, it usually losses the
details of changes. In our work, we develop a weighted amplitude filter
to align the image pair. This is done by an iterative alignment process,
which is good at preserving the detailed information of changes.

2.3. 2D image alignment

Many existing works adopt variational methods for optical flow esti-
mation to achieve the alignment of 2D images (Horn & Schunck, 1981).
Many works (Brox & Malik, 2011; Liu et al., 2011; Weinzaepfel et al.,
2013) focused on the accurate estimation of optical flow, which better
captured the large displacements of pixels or dramatic changes in ap-
pearance. Weinzaepfel et al. (2013) proposed the correlated multi-scale
patches that were matched for producing the optical flow. Compared
to the conventional variational methods, our weighted amplitude filter
provides better property of motion smoothness.

In recent years, CNN-based methods for optical flow estimation have
been developed (Dosovitskiy et al., 2015). Ilg et al. (2017) used the
cascaded architecture to improve the accuracy of flow estimation but at
cost of increasing the computational overhead. The recent SpyNet (Ran-
jan & Black, 2017), PWC-Net (Sun et al., 2018), and LiteFlowNet (Hui
3

et al., 2018) were lightweight networks that can achieve competitive
performance on the flow estimation. However, to reduce the ghosting
effects in the warped images, the learning-based methods require a
lot of training data, which significantly increases the manual labeling
efforts.

Different from the above 2D registration methods, our method is
relied on the phase-based scheme. Since in the case of fine-grained
change detection, the viewpoint differences of two observations of dif-
ferent times are not large and the scene is fine-grained, the phase-based
scheme can manipulate subtle movements accurately by adjusting their
phases.

2.4. Illumination equivalence

Many methods, such as color constancy (Gijsenij et al., 2011; Yang
et al., 2015), intrinsic image decomposition (Hauagge et al., 2013),
and some deep learning-based method (Fourure et al., 2016), can be
used to do lighting correction, given the images under different lighting
conditions.

Inspired by structural similarity which is used for comparing the lo-
cal patterns of the pixel intensities for image quality assessment (Wang
et al., 2004; Zhang et al., 2011), we use the complex steerable pyramid
to extract phase congruency which implies the structure information
irrelevant to lighting variation. Experiments show that structural infor-
mation is good at handling lighting differences for fine-grained change
detection.

3. The proposed method

Given two observations of different time denoted as 𝐼ref and 𝐼cur ,
here 𝐼ref represents reference observation and 𝐼cur represents current
bservations, the goal of fine-grained change detection is to estimate
he change map 𝐶. For the existing fine-grained change detection
ethods, 𝐶 can be formulated by:

= 𝐿(𝑅(𝐼ref )) − 𝐼cur , (1)

here R(⋅) represents the geometry registration process and L(⋅) repre-
ents the lighting compensation process, which aligns the geometry and
ighting condition of 𝐼ref to 𝐼cur . Lighting compensation can be seen as
dding a ‘‘virtual’’ light to reference observation to correct its lighting
ifferences to the current observation.

Since lighting compensation may introduce many false-positive re-
ults and changes between two observations may disappear during the
ighting compensation process, we propose to extract structure informa-
ion which is irrelevant to lighting conditions. The framework is shown
n Fig. 2. We first use the complex steerable pyramid to align the two
mages taken at different times (say, with one-year interval). We then
xploit the complex steerable pyramid to extract structure information
o handle the lighting difference between the two observations and
inally obtain the change map.

In our method, the change map 𝐶 is formulated as

= 𝑃 (𝑅(𝐼ref )) − 𝑃 (𝐼cur ), (2)

here R(⋅) and P(⋅) represent the registration operation and structure
nformation extraction. In the following, we introduce the details of our
ine-grained change detection method.

.1. Phase-based registration

Given an input image 𝐼 , it is decomposed into complex-valued
esponses 𝑆𝜔,𝜃 of different scales and orientations by applying the
teerable filters 𝜓𝜔,𝜃 to 𝐼 ,

𝑆𝜔,𝜃 = (𝐼 ∗ 𝜓𝜔,𝜃)(𝑥, 𝑦),
= 𝐴𝜔,𝜃(𝑥, 𝑦)𝑒

𝑖𝜙𝜔,𝜃(𝑥,𝑦) , (3)

= 𝐸𝜔,𝜃(𝑥, 𝑦) + 𝑖𝑂𝜔,𝜃(𝑥, 𝑦),
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Fig. 2. The framework of the proposed method.
Fig. 3. Registration results with/without weighted amplitude filter and iterative alignment process.
where 𝐸𝜔,𝜃 is the even-symmetric filter response, and 𝑂𝜔,𝜃 is the odd-
symmetric filter response. The amplitude is computed by 𝐴𝜔,𝜃(𝑥, 𝑦) =
√

𝐸2
𝜔,𝜃(𝑥, 𝑦) + 𝑂

2
𝜔,𝜃(𝑥, 𝑦), and the phase is computed by 𝜙𝜔,𝜃(𝑥, 𝑦) =

arctan(𝑂𝜔,𝜃(𝑥, 𝑦)∕𝐸𝜔,𝜃(𝑥, 𝑦)).
The decomposition of the image pair (𝐼ref , 𝐼cur) into phase and

amplitude can be written as:

𝐼ref (𝑥, 𝑦) → 𝐴ref (𝜔, 𝜃, 𝑥, 𝑦)𝑒𝑖𝜙ref (𝜔,𝜃,𝑥,𝑦), (4)

𝐼cur (𝑥, 𝑦) → 𝐴cur (𝜔, 𝜃, 𝑥, 𝑦)𝑒𝑖𝜙cur (𝜔,𝜃,𝑥,𝑦). (5)

We then compute the phase variation between two observations
by subtracting the local phase 𝜙 of the current observation in each
position, orientation and scale in the complex steerable pyramid from
the reference observation, given by

𝜙var (𝜔, 𝜃, 𝑥, 𝑦) = 𝜙ref (𝜔, 𝜃, 𝑥, 𝑦) − 𝜙cur (𝜔, 𝜃, 𝑥, 𝑦). (6)

Next, the aligned reference image with respect to the current obser-
vation can be computed by simply subtracting 𝜙var from 𝜙ref , as follow,

𝐼 regref = 𝑅(𝐴ref (𝜔, 𝜃, 𝑥, 𝑦)𝑒𝜙ref−𝜙var ),
= 𝑅(𝐴ref (𝜔, 𝜃, 𝑥, 𝑦)𝑒𝜙cur ).

(7)

This will produce a seemingly good registration result shown in
Fig. 3(c), for which the reference observation in Fig. 3(a) is aligned
to the current observation in Fig. 3(b). But A close inspection reveals
that Fig. 3(c) loses many details of the reference image compared to
Fig. 3(a) (look at the circled regions in the blow-ups). It is because
the arrangement of the phase encodes the structure information of the
image, and Eq. (7) directly uses the phase value including the changed
area in each scale and orientation subband of the current observation.
Hence, Fig. 3(c) looks like the current observation in details.
4

Weighted amplitude filtering. To handle the above problem, let us an-
alyze the phase variation. The phase variation between the reference
observation and the current observation in each subband of the steer-
able pyramid is caused by two main factors: viewpoint variation and
scene changes. Scene changes are indeed the real change of the objects.
It is the variance of the object appearance regardless of viewpoint
variation, lighting difference, etc. Therefore, if we can eliminate the
phase variation caused by scene changes, we will obtain the phase
variation caused by viewpoint variation and do the alignment more
accurately.

Here, we propose a weighted amplitude filtering to eliminate the
phase variation. Considering the prior knowledge that the structure
moves in the same way in the spatial neighborhood (Brox & Malik,
2011; Horn & Schunck, 1981; Weinzaepfel et al., 2013), we introduce
the smoothness constraint in a filtering manner, given by

𝜙f iltered
var =

(𝛾𝜙var𝐴ref ) ∗ 𝐺𝜌
𝐴ref

, (8)

where 𝐺𝜌 is a Gaussian kernel given by 𝑒
− 𝑥2+𝑦2

𝜌2 , the operator * denotes
convolution operation, 𝐴ref is the amplitude of the reference obser-
vation, and 𝛾 is a factor that controls the displacement in the spatial
domain which we can manipulate by shifting the phase. The Gaussian
kernel in the weighted amplitude filter is to make the pixels move with
a similar distance to their neighborhood. We further use the amplitude
as a weight since each part in a scene usually has a similar amplitude
in each band of the steerable pyramid and each part moves in a similar
way. In this way, the alignment will not change the arrangement of
the pixels and thus preserve the detail of the scene changed area. In
experiments, we find that a small amount of phase variation can better
reflect the real motion between two images. Specifically, we choose
𝛾=0.5 in our work which makes a trade-off between the amount of
displacement that can be successfully represented and the computation
efficiency.
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Iterative alignment. Let us examine the ideal case of image alignment.
ince the offsets between two images are proportional to their phase
ariation, intuitively, the two images are well aligned when their
hase variation equals zero. However, applying the weighted amplitude
iltering for one time cannot make the phase variation equals zero. As
hown in Fig. 3(e), the image pair is not well aligned, which has many
naligned edges. To handle this, we apply the weighted amplitude
iltering in an iterative manner. That is, we iteratively process 𝜙ref to

make it approach to 𝜙cur ,

𝜙𝑘+1ref = 𝜙𝑘ref − 𝜙
f iltered
var

𝑘. (9)

In this way, the current observation is warped successively by each
iteration and finally aligned to the reference observation. The aligned
image can be computed by

𝐼 regref = 𝑅(𝐴𝑘ref 𝑒
𝜙𝑘 ), (10)

where 𝑘 represents 𝑘th iteration of the base algorithm.
Fig. 3(d) shows the aligned result, which is well-aligned with the

current observation and also well preserves the original details. The
quantitative performance of the iterative registration is shown in Fig. 8.

For the observation images of murals and sculptures, the geometry
difference usually contains deformation caused by non-linear deforma-
tion of the surface and displacement caused by viewpoint variation.
The weighted amplitude filter and the iterative process can be regarded
as a decomposition of the complex movement. In the experiment, we
find that the former iterations most compensates for the displace-
ment caused by viewpoint variation, and the latter iterations most
compensate for the deformation caused by non-linear deformation (as
demonstrated in Fig. 3(e–g)).

3.2. Lighting-invariance change detection

When we align the image pair taken at different times, we can
estimate changes by subtracting the aligned images in the spatial
domain, given by

𝐶im =
{

1, 𝜁 ≤ |𝐿(𝐼 regref ) − 𝐼cur |
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (11)

Existing methods detect the changes between two observations by
comparing their intensity. However, this spatial change may contain
some false-negative results (as demonstrated in Fig. 1(d)), which is
caused by the lighting difference. And this spatial change may contain
some false-negative result for some changes may have low intensity
changes between two observations.

Notice that the phase of the complex steerable pyramid implies
structure information that is robust to lighting conditions. Further,
structure information is more sensitive to structure changes even the
changes has little color variance. We propose to extract the structure
information to handle the lighting difference between two observations
of different times.

Specifically, we first extract the phase congruency based on complex
steerable pyramid, which indicates the structure information (Sampat
et al., 2009; Zhang et al., 2011), at position (𝑥, 𝑦) as follows:

𝑃 (𝑥, 𝑦) =
∑

𝜃 𝐸𝜃(𝑥,𝑦)
𝜖 +

∑

𝜔
∑

𝜃 𝐴𝜔,𝜃(𝑥, 𝑦)
, (12)

where 𝜖 is a small positive constant used to prevent division by zero.
Here, we choose 𝜖 = 0.0001. Let the phase congruency of the reference
observation be 𝑃ref , the current observation be 𝑃cur , and the registered
observation be 𝑃 𝑟𝑒𝑔ref , respectively.

As we project two observations of different times into one feature
space which is irrelevant to lighting difference and sensitive to struc-
ture information. Then the changes between the two observations of
different times can be estimated by,

reg
5

𝑃c = 𝑃cur − 𝑃ref . (13)
Note that 𝑃 reg
𝑟𝑒𝑓 may contain some residual components which are not

removed by the phase-based registration stage. We also compute the
second difference to compensate the residual components, as follows,

𝑃r = 𝑃cur − 𝑃ref . (14)

Given 𝑃c and 𝑃r , we estimate the changes in the phase domain as,

𝑃 =
{

1, 𝛿 ≤ |𝑃c − 𝜆 ∗ 𝑃r |
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (15)

here 𝜆 is a parameter used to adjust the relative importance of 𝑃c and
r .

Since the phase domain and the spatial domain are complementary,
nd they reflect different aspects of changes of the input image pair.
hase domain is more sensitive to structure changes between two
bservations and spatial domain are more sensitive to intensity changes
etween two observations. We fuse the detected changes from the phase
omain and the spatial domain to get accurate results.

The final change map is computed as the intersection between 𝐶im
nd 𝑃 , given by

f inal = 𝐶im ∩ 𝑃 . (16)

. Experimental results

.1. Experimental settings

We compare our methods with five state-of-the-art FGCD methods
ncluding PCA-K-Means (Celik, 2009), ChangeNet (Varghese et al.,
018), SubSENCE (St-Charles et al., 2014), FGCD (Feng et al., 2015)
nd NPSG (Sun et al., 2021), on four real-world datasets, including
hree public datasets (Feng et al., 2015) and a newly collected one
Fig. 4). (1) The first dataset, denoted as 𝐷𝑠, contains 4 small statues
nd artifacts. (2) The second dataset, denoted as 𝐷𝑝, contains two
culpture scenes, which are taken in the Summer Palace with one year
nterval. (3) The third dataset, denoted as 𝐷𝑏, provides a sequence of 10
ets of laboratory scenes to simulate the deterioration of a mural over
ime. Each sequence has 7 images with 7 different illuminations, in-
luding one environment lighting (EL) and six directional side lightings
DSLs).

(4) Apart from the three datasets, we construct a new dataset that
ontains 100 scenes, named HCD100 (heritage change detection in
00 scenes). Each scene has a counterpart that was taken a year ago,
atisfying the need of detecting the fine-grained changes in the practices
f cultural heritage preservation. More details can be found in the next
ubsection.

The change detection results are evaluated in terms of the F1-
easure (F1), recall (Re), precision (Pr), specificity (Sp), false pos-

tive rate (FPR), false-negative rate (FNR) and percentage of wrong
lassifications (PWC).

Additionally, we quantify the registration performance with the
FD score (Tian et al., 2018) based on the average feature-point
isplacement flow :

𝐹𝐷(𝑓ref , 𝑓cur ) =
1
𝑚

𝑚
∑

𝑖=1
‖𝑓 i

cur − 𝑓
i
ref‖2, (17)

where 𝑓ref and 𝑓cur are the matched feature-point coordinates in the
reference observation and the current observation, 𝑚 is the number of
matches. Given an image pair, the matched feature points are deter-
mined by using SIFT feature descriptor and RANSC robust matching as
in Tian et al. (2018) .
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Fig. 4. Some examples in HCD100, 𝐷𝑠, 𝐷𝑝, and 𝐷𝑏 dataset. The first and second
column are the last observation and current observation. The third column is the GT.

Table 1
HCD100, 𝐷𝑠, 𝐷𝑝, and 𝐷𝑏 datasets.

Dataset Scenes Heritage sites Type

HCD100 100 Mogao Grottoes and
Terra Cotta Warriors

Ancient mural and
painted sculpture

𝐷𝑠 4 Laboratory scene Laboratory sculpture
𝐷𝑝 2 Summer Palace Sculpture
𝐷𝑏 10 Laboratory scene Laboratory testing block

4.2. The proposed HCD100 dataset

Dataset HCD100 is the first dataset focusing on fine-grained change
detection of ancient murals. It contains 100 scenes with diverse heritage
sites and different degradation sources.

Also note that for the real heritage sites, the changes between two
observations of different times can be rather tiny and complex. Figs. 5
and 6 show some cases in our dataset. We compare HCD100 with 𝐷𝑠,
𝐷𝑝, and 𝐷𝑏 in Table 1.

High quality. We collected the data in Dunhuang Mo Gao Grotto
and Terra Cotta Warriors in Mausoleum of the First Qin Emperor with
one-year interval. Empirically, the experts of the heritage sites showed
where the representative changing cases are. One year later, we went
to the heritage sites again to collect the same scene. We relocated the
current camera to the similar pose and position of the reference obser-
vation I𝑟𝑒𝑓 and then captured the current observation image I𝑐𝑢𝑟. Note
that although active camera relocalization was employed in the data
capturing (Feng et al., 2015; Tian et al., 2018), the image pair still has
some slight viewpoint differences, and even a tiny viewpoint difference
may have a big impact on the fine-grained change detection results, as
demonstrated in Fig. 1. Here, our dataset focuses on millimeter-level
fine-grained changes in the heritage sites, which can be difficult for
experienced experts to directly identify with naked eyes.

Diverse scenes. To make the dataset more valuable and covering
diverse scenes, we collect the 100 scenes at different places in the two
heritage sites and covering different degradation sources, e.g. cracking
and shedding on the surface, etc.

Data annotation. It is a challenging task to annotate the image
pairs with many tiny changes. To ensure labeling accuracy, we use
6

Table 2
Registration performance comparison. The best result is shown in bold.
More explanation is refereed to in text.

Method w/o registration FGCD Our method

AFD 1.3812 0.6607 0.5374

cross-validation in the annotation process. Two volunteers annotated
all the changes between two observations of different times separately,
and we invited a specialist in the field of heritage prevention to
judge the differences between their annotations. We finally selected the
annotations which are not controversy over the three people.

It is worth mentioning that finding tiny changes on the two images
is really difficult. Hence we provided the annotators with the warped
current observation via registration methods, which are only used for
better guidance, and the annotators made annotation directly on the
original reference image. To be more specific, given two images 𝐼𝑟𝑒𝑓
and 𝐼𝑐𝑢𝑟, we used two registration methods (the one proposed in our
paper and that used in FGCD) to warp 𝐼𝑐𝑢𝑟 to 𝐼𝑟𝑒𝑓 . The warped images
𝑅1(𝐼𝑐𝑢𝑟) and 𝑅2(𝐼𝑐𝑢𝑟) are aligned with 𝐼𝑟𝑒𝑓 with some little distortions.
Next we compared 𝑅1(𝐼𝑐𝑢𝑟) with 𝐼𝑟𝑒𝑓 to generate 𝐺𝑇1 and compare
𝑅2(𝐼𝑐𝑢𝑟) with 𝐼𝑟𝑒𝑓 to generate 𝐺𝑇2. The annotator compares 𝐺𝑇1, 𝐺𝑇2
with 𝐼𝑟𝑒𝑓 and 𝐼𝑐𝑢𝑟 to select the more accurate change label, and then
does manual annotation on the original reference image. By this way,
the annotator generates a ground truth.

4.3. Registration performance comparison

We first compare the registration results of our phase-based method
and that from SIFT flow adopted in FGCD method (Feng et al., 2015) by
AFD scores. AFD score measures the average feature-point displacement
(Eq. (17)). The low AFD score is better.

Quantitative comparison results are listed in Table 2. ‘w/o registra-
tion’ represents that last observation and current observation are not
registered. ‘FGCD’ represents that we use the registration step of FGCD
to align the last observation with the current observation. ‘Our method’
represents that we use the phase-based registration method. The AFD
score of the unregistration image pair is 1.3812. The AFD score of
our method is 0.5374, while the AFD score of FGCD is 0.6607. In
comparison, our method achieves the highest registration performance.

4.4. Comparisons with SOTA methods

4.4.1. Visual comparison
Fig. 5 visually compares our method with the state-of-the-art meth-

ods, including FGCD, subSENCE, NPSG and ChangeNet, on ten dif-
ferent scenes. Each scene contain two observations of different time,
Ground Truth change map, change detection results of three state-of-
the-art methods and change detection results of our method. Limited
to the space of this paper and the tiny changes in mural scenes, the
changes can be difficultly observed by the naked eye. We also provide
the zoomed-in version in Fig. 6. The tiny changes can be obviously
observed by the zoomed-in patches.

In comparison, subSENCE is sensitive to lighting differences, and
predicts large changed regions for the sixth and eighth scenes, which
exhibit a little bit obvious difference in lighting conditions. ChangeNet
fails to detect such subtle changes for all the tenth scenes. FGCD reports
better detection results among the three state-of-the-art methods, how-
ever, it still wrongly estimates or misses changed regions. FGCD detects
the changes by the intensity difference between the last observation
and adjusted current observation, However, the changes in the mural
scene may have low intensity difference as shown in Figs. 5 and 6.
Our method detects the changes by structure information. Structure
information is irrelevant to lighting conditions and more sensitive to
structural changes. It is clear that the change detection results of our
method look much close to the ground truth, and surpass other methods
with large margins in terms of F1 measure (the red numbers in the
left-bottom of figures).
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Fig. 5. Ten scenes in HCD100.
Table 3
Results on HCD100 dataset. The best results are shown in bold. More explanation is refereed to in text.

Method F1 Re Pr Sp FPR FNR PWC

PCA-K-Means (Celik, 2009) 0.04 0.53 0.03 0.58 0.42 0.47 42.4
ChangeNet (Varghese et al., 2018) 0.00 0.001 0.00 0.89 0.11 0.99 10.79
SubSENCE (St-Charles et al., 2014) 0.08 0.08 0.27 0.98 0.02 0.92 2.73
FGCD (Feng et al., 2015) 0.19 0.25 0.39 0.99 0 0.75 1.11
NPSG (Sun et al., 2021) 0.26 0.50 0.28 0.97 0.03 0.52 2.80
pb-FGCD 0.51 0.54 0.54 1 0 0.46 0.63
4.4.2. Quantitative comparison
Tables 3–6 show the average quantitative performance of different

methods on the four datasets. Our method is denoted as pb-FGCD.
For the comparison methods, we have tried a series of reasonable
parameters, and use the best one in our evaluation.

Dataset HCD100 has finer textures and more subtle changes com-
pared with 𝐷𝑠, 𝐷𝑝, and 𝐷𝑏. It requires more accurate registration ability
and it is more challenge to detect the tiny changes from different
lighting conditions. We can clearly see that our approach increases the
F1-measure by more than 190% over the second-best method NPSG
7

on HCD100 dataset. The proposed method outperforms the FGCD by
a large margin due to two reasons: (1) our method can align the two
observations of different times more accurately as shown in Table 2,
which is vital for locating and detecting the changing area. (2) The
lighting compensation based methods detect the changes by intensity
difference. FGCD struggles at the changes with low intensity difference.
Our method uses structure information which is irrelevant to lighting
difference. And structure information is sensitive to structure changes,
which is vital for detecting the fine-grained changes with low intensity
difference.
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Fig. 6. Registration results with/without weighted amplitude filter and the histogram of phase shift with/without weighted amplitude filter.
Fig. 7. ROC curves of pb-FGCD, FGCD and subSENCE on datasets HCD100.

Table 4
Results on Statues dataset 𝐷𝑠. The best results are shown in bold. More explanation is
refereed to in text.

Method F1 Re Pr Sp FPR FNR PWC

SubSENCE A 0.02 0.83 0.01 0.88 0.12 0.17 12.13
SubSENCE M 0.01 0.98 0.00 0.66 0.34 0.02 34.28
SubSENCE LFA 0.27 0.28 0.34 0.99 0.01 0.72 1.57
SubSENCE LFM 0.12 0.77 0.07 0.95 00.05 0.23 5.37
FGCD(D&T) 0.53 0.78 0.43 1.00 0.00 0.22 0.28
FGCD(SVM) 0.51 0.86 0.39 1.00 0.00 0.14 0.29
NPSG 0.42 0.59 0.45 1.00 0.00 0.41 0.28
pb-FGCD 0.70 0.74 0.70 1.00 0.00 0.26 0.08

We further compare the average ROC curves between pb-FGCD,
FGCD and subSENCE as shown in Fig. 7. It is obvious that our method
outperforms FGCD method with large margins.
8

Table 5
Results on Statues dataset 𝐷𝑝. The best results are shown in bold. More explanation is
refereed to in text.

Method F1 Re Pr Sp FPR FNR PWC

SubSENCE A 0.02 0.55 0.02 0.60 0.40 0.45 39.41
SubSENCE M 0.02 0.93 0.01 0.20 0.80 0.07 78.85
SubSENCE LFA 0.08 0.04 0.05 0.99 0.01 0.96 1.81
SubSENCE LFM 0.07 0.22 0.04 0.95 0.05 0.78 5.85
FGCD(D&T) 0.34 0.28 0.52 1.00 0.00 0.72 0.92
FGCD(SVM) 0.51 0.53 0.47 0.99 0.01 0.47 1.02
NPSG 0.22 0.16 0.33 1.00 0.00 0.84 0.73
pb-FGCD 0.52 0.48 0.58 1.00 0.00 0.52 0.94

Table 6
Results on Statues dataset 𝐷𝑏. The best results are shown in bold. More explanation is
refereed to in text.

Method F1 Re Pr Sp FPR FNR PWC

SubSENCE A 0.24 0.50 0.31 0.72 0.28 0.50 28.32
SubSENCE M 0.23 0.67 0.19 0.66 0.34 0.33 34.01
SubSENCE LFA 0.06 0.03 0.26 1.00 0.00 0.97 1.43
SubSENCE LFM 0.28 0.21 0.50 0.99 0.01 0.79 1.62
FGCD(D&T) 0.45 0.40 0.56 1.00 0.00 0.60 1.23
FGCD(SVM) 0.53 0.62 0.48 0.99 0.01 0.38 1.41
NPSG 0.23 0.55 0.16 0.97 0.03 0.45 3.89
pb-FGCD 0.51 0.56 0.47 0.93 0.00 0.44 1.22

For 𝐷𝑝, 𝐷𝑚 and 𝐷𝑏 dataset, we also include possible variants of
SubSENCE, NPSG and FGCD. SubSENCE reports improved results on 𝐷𝑏
than 𝐷𝑠 and 𝐷𝑝. NPSG shows a better results on 𝐷𝑝 than 𝐷𝑏 and 𝐷𝑠.
For the two variants of FGCD, the one using SVM gets better recall and
PWC values, while the one using D&T reports better Pr, Sp, FRR and
FNR values. In comparison, our method ph-FGCD outperforms FGCD
by a large margin on 𝐷𝑠, gets better results than FGCD on 𝐷𝑝, and
achieves competitive results on 𝐷𝑏. Our method obtains an overall
better performance on 𝐷𝑝, 𝐷𝑚 and 𝐷𝑏 dataset compared with other
methods.



Expert Systems With Applications 227 (2023) 120181X. Wang et al.
Table 7
The time complexity of different methods.

Method Time complexity Running time (s)

PCA-K-Means (Celik, 2009) 𝑂(𝐻𝑊 ) 3.9
SubSENCE (St-Charles et al., 2014) 𝑂(𝐻𝑊 ) 98.5
FGCD (Feng et al., 2015) 𝑂(𝐻2𝑊 2) 58.7
NPSG (Sun et al., 2021) 𝑂(𝐻2𝑊 2) 162.1
pb-FGCD 𝑂(𝐻𝑊 𝑙𝑜𝑔(𝐻𝑊 )) 53.4

Table 8
Change detection result with and without weighted amplitude filtering on HCD100, 𝐷𝑝,
𝐷𝑚 and 𝐷𝑏. The best results are shown in bold.

Method Dataset F1 Re Pr Sp FPR FNR PWC

W/o filter HCD100 0.21 0.14 0.74 1.00 0.00 0.86 0.63
With filter HCD100 0.51 0.54 0.54 1.00 0.00 0.46 0.63

W/o filter 𝐷𝑠 0.42 0.72 0.39 0.99 0.01 0.28 1.29
With filter 𝐷𝑠 0.70 0.74 0.70 1.00 0.00 0.26 0.08

W/o filter 𝐷𝑝 0.21 0.25 0.19 0.98 0.02 0.75 3.87
With filte 𝐷𝑝 0.52 0.48 0.58 1.00 0.00 0.52 0.94

W/o filter 𝐷𝑏 0.28 0.46 0.23 0.95 0.05 0.54 5.40
With filter 𝐷𝑏 0.51 0.56 0.47 0.93 0.00 0.44 1.22

4.4.3. Running time
We report the running time for fine-grained change detection be-

tween a pair of 1280*720 images. All measurements were performed
on a standard desktop (Intel Core i7, 16 GB memory).

Our method spends an average time of 53.4 s, Most of our time is
taken in the process of registration. Since our method tackles geometry
difference and lighting difference in the spatial-frequency domain, the
main computation cost is Fourier transform which has a fast algorithm
FFT, and the computational complexity of FFT is 𝑂(𝐻𝑊 𝑙𝑜𝑔(𝐻𝑊 )).

The time complexity and running time of comparison methods are
shown in Table 7. Time complexity is the amount of the time taken
by an algorithm to run, as a function of the length of the input. Since
this time complexity is generally difficult to compute exactly, and
the running time for small inputs is usually not consequential, one
commonly focuses on the behavior of the complexity when the input
size increases. The time complexity of SubSENCE (St-Charles et al.,
2014) is lower than other methods. However, it is the second-worst
method according to running time taking 98.5 s. As SubSENCE (St-
Charles et al., 2014) forms the background model of each scene by
a set of 50 background samples to improve the robustness to lighting
variations. According to Cormen et al. (2022), the lower order terms
and the constant multiplier of the highest order term are ignored for
calculating time complexity. The constant multiplier ‘50’ is ignored
when calculating time complexity. For computing the running time, the
multiplier ‘50’ has a quite large impact.

4.5. Ablation study

To evaluate the effectiveness of the key components of our method,
we do ablation studies in the following.

The effectiveness of weighted amplitude filter. We first conduct
ablation study of weighted amplitude filter on dataset HCD100. Results
are reported in Table 8. Without the weighted amplitude filter, we
obtain F1-measure of 0.21, recall value of 0.14, precision of 0.74.
By using the weighted amplitude filter, our approach can boost the
change detection performance greatly, by reporting F1-measure of 0.51
(143% higher), recall value of 0.54. We can also observe that weighted
amplitude filtering achieves consistent improvement on 𝐷𝑝, 𝐷𝑚 and 𝐷𝑏
dataset.

It is because that weighted amplitude filter can preserve the chang-
ing area when we warp the reference observation to the current obser-
vation.
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Fig. 8. Quantitative comparison of iterative registration.

Table 9
Change detection results with and without structure information on HCD100. The best
results are shown in bold.

Method F1 Re Pr Sp FPR FNR PWC

W/o 0.10 0.36 0.13 0.87 0.13 0.64 13.07
With 0.51 0.54 0.54 1 0 0.46 0.63

The effectiveness of iterative alignment strategy. Fig. 8 shows
the results with respect to the different numbers of iterations of regis-
tration. As shown in the figure, iterative alignment achieves consistent
performance gains.

The AFD score tends to be stable for 4-iterations, and hence we
adopt 4 iterations in all our experiments.

The effectiveness of structure information. Here we carry out
more detailed explorations on our component design without the struc-
ture information on HCD100. It can be seen in Table 9 that without
structure information (i.e. using Eq. (11) only to estimate changes in
the spatial domain) introduces a big decrease to the change detection
results.

4.6. Discussion

4.6.1. Parameter determination
Our method has four parts of hyperparameters. (1) The first part is

the phase-based registration parameters, the scales 𝜔=4 and orienta-
tions 𝜃=8 used to define the complex steerable pyramid (Meyer et al.,
2015; Wadhwa et al., 2013);

(2) The second part is parameters in the weighted amplitude fil-
tering and iterative alignment, including the displacement factor 𝛾, the
Gaussian kernel parameter 𝜌 and the iteration number 𝑁 . We set 𝛾=0.5
for achieving the reasonable displacement manipulated by the phase
and preservation of details. As for Gaussian kernel parameter 𝜌, Fig. 9
left shows the F1-measure for 𝜌 ranging from 0 to 9. Since F1-measure
tends to be stable for 𝜌 = 6, we set 𝜌 = 6 in our experiments. As for
iteration number 𝑁=4, Fig. 8 shows the results of the different numbers
of iterations of registration. Iterative alignment achieves consistent
performance gains, and the AFD score tends to be stable for 4-iterations.

(3) The third part is the structure information extraction parameter,
i.e. the spatial threshold 𝜁 . We follow the work of Sampat et al. (2009),
Zhang et al. (2011). (4) The fourth part is the change detection part
parameter, i.e. the structure information threshold 𝛿. To determine
an optimal threshold 𝛿 for structure information, we compute the
evolution of the F1-measure of our method shown in Fig. 9 right. The
evolution is computed in a subset that contains 10 scenes in HCD100.
According to the figure, we set 𝛿=0.3 in Eqs. (11).
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Fig. 9. (a) F1-measure for 𝜌 ranging from 0 to 9. (b) F1-measure for 𝛿 ranging from 0 to 1.
4.6.2. Analysis of weighted amplitude filter
Here we illustrate the phase shift in terms of the histogram to

demonstrate why weighted amplitude filter works. We show 3 scenes
in Fig. 6. Each scene has the reference observation, the current observa-
tion, the registration result with/without using the weighted amplitude
filter, the histogram of their phase shift with respect to the current
observation, and the zoom-in regions. Note that the complex steerable
pyramid contains multiple frequency bands, and here we randomly
select two bands to compute the histograms. Intuitively, for the well-
aligned images, the phase shift will be close as nearby pixels have
similar shifts.

We can observe in the rightmost column in each scene that there are
many values close to 0 and 1, which is introduced by the change of pixel
values due to unalignment. When we use the weighted amplitude filter
to process the phase variation, it can be seen in the fifth volume that
the phase shift now becomes more concentrated in the middle range. In
other words, by using the weighted amplitude filter, we let more pixels
get a more accurate phase shift. As a result, we can align the image
pair while preserving the changing area.

5. Conclusion

In this paper, we proposed a novel method for fine-grained change
detection based on the extensions of the phase-based method, to com-
pensate for geometry difference and lighting difference. Relying on the
complex steerable pyramid, we introduce the weighted amplitude filter
and iterative alignment strategy for accurate registration, and estimate
changes by fusing both spatial domain and frequency domain estima-
tions. In addition, we propose a real-world dataset for different scenes
under varying lighting conditions. We make a comparison with the
state-of-the-art fine-grained change detection methods. Our approach
increases the F1-measure by more than 190% over the state-of-the-art
method, and our method is much faster.
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Appendix

In this section, we give an intuition for phase-based image registra-
tion. An example is shown in Fig. 10(a), in which a 1D image intensity
profile undergoes global translation over time. Then, we explain the
limitation of our method as demonstrated in 10 (b).

Let one-dimensional sinusoidal function defined as:

𝑦1 = 𝐴𝑠𝑖𝑛(𝜔𝑥 − 𝜙1), (18)

where A is the amplitude, 𝜔 is the angular frequency and 𝑝ℎ𝑖 is the
phase. A translation of this function can be described by modifying the
phase, yielding a second sinusoidal function:

𝑦2 = 𝐴𝑠𝑖𝑛(𝜔𝑥 − 𝜙2). (19)

We can align 𝑦2 to 𝑦1 by modifying the phase variations between 𝜙1
and 𝜙2, i.e.

𝜙𝑣𝑎𝑟 = 𝜙1 − 𝜙2, (20)

𝑦2 = 𝐴𝑠𝑖𝑛(𝜔𝑥 − 𝜙2 − 𝜙𝑣𝑎𝑟). (21)

Now, considering the general functions 𝑓 (𝑥) translated by a dis-
placement function 𝜎(𝑥), this can be represented in the Fourier domain
as a sum of complex sinusoids over all frequencies 𝜔:

𝑓 (𝑥 + 𝜎(𝑡)) =
∞
∑

𝜔=−∞
𝐴𝜔𝑒

𝑖𝜔(𝑥+𝜎(𝑡)), (22)

in which each band corresponds to a single frequency 𝜔.
In general, motions in two observations of different times are local

not global. We use the complex steerable pyramid to deal with local
motions for registration. The scheme has limitation to handle large
displacements. Since large displacements correspond to a phase differ-
ence more than the periodicity of the phase value, shifting can lead
to a phase ambiguity. An example is shown in Fig. 10(b), where the
actual displacement is larger than the computed phase. Also note that
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Fig. 10. Illustration of phase-based image registration.
this limitation can be alleviated by the pre-registration step. We apply
the affine transformation whose parameters are calculated by matching
SIFT descriptor and RANSAC (Fischer et al., 1981; Lowe, 2004) for
pre-registration.
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