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Active camera relocalization (ACR) is an important and challenging task, whose feasibility and success
highly depend on illumination consistency and convergence speed. If under varied lighting conditions
in outdoor scenes, however, both the convergence and accuracy of ACR cannot be guaranteed. In this
paper, we propose a fast and robust ACR scheme, namely rACR, that works well under highly varied illu-
minations. To achieve robustness to lighting variations, rather than using 2D feature matching, we rely on
3D point clouds, acquired by a visual SLAM engine (VSE), to register the current and reference camera
coordinate frames. We present a scale-aware point cloud matching function that is minimized by a
two-stage coarse-to-fine method, i.e., fast alignment considering only geometric error at first, followed
by fine-grained alignment optimizing both geometric, photometric errors and the poses of VSE key-
frames. The two aligned point clouds with equalized scales help to bridge current and reference observa-
tions, avoiding 2D feature matching that are sensitive to large lighting variances, and can directly
generate effective camera pose adjustments. Moreover, to achieve fast convergence speed, we implement
the above algorithm with a parallel scheme, which is specifically composed of an initialization procedure
and three parallel threads, i.e., VSE thread, pose alignment thread, and pose adjustment thread. Extensive
experiments show that, rACR has much higher robustness to lighting variations and 5� faster conver-
gence rate over state-of-the-art methods, thus significantly improves its feasibility in real-world fine-
grained change detection tasks in the wild.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Active camera relocalization (ACR) aims to physically relocalize
the current camera to the same 6D pose, producing the reference
single or multiple images [1], which is a challenging task and
widely applicable to fine-grained change detection [2–4] and
urban environment monitoring [5]. Among all these applications,
fine-grained change detection (FGCD) [3], aiming to find minute
changes of a high-value scene by comparing twice observations
within a proper time interval, maybe the most related problem
whose success critically depends on ACR.

So far, most state-of-the-art ACR methods [6,3,1] rely on 2D fea-
ture matching to estimate the relative camera pose. Once the light-
ing conditions change a lot between twice observations, their
convergence and accuracy can easily be undermined. In this paper,
we use FDF (feature-point displacement flow) and AFD (average
feature-point displacement) [1] to evaluate the camera
relocalization accuracy. FDF uses a set of matched pairs to repre-
sent relocalization accuracy, the arrows in FDF visually show the
pose difference between current camera and the target one. AFD
indicates the average length of all arrows in FDF. The smaller the
AFD score, the more accurate the camera relocalization. Besides,
camera relocalization is successful if the corresponding AFD is less
than 3. As shown in Fig. 1(a), when the lighting is consistent (see
the 1st and 3rd columns in the first row), the state-of-the-art
ACR method [1] works well. In contrast, under significant lighting
variance (1st and 2nd columns), ACR fails since lighting difference
influences the performance of 2D feature matching, see the feature
matching result in the second row of Fig. 1(a). Therefore, the accu-
racy and feasibility of ACR in real-world highly depend on illumina-
tion consistency. That is, state-of-the-art ACR method [1] cannot
work well under highly varied illuminations (see Fig. 7 for the
experiment results of ACR [1] under varied illuminations), which
significantly limits their application in outdoor scenes, because
there are so many high-value scenes, e.g., cultural heritages or vital
equipment, exist in outdoor where the lighting conditions certainly
cannot be controlled. As verified by Fig. 1(b), due to lacking

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.04.102&domain=pdf
https://doi.org/10.1016/j.neucom.2022.04.102
mailto:wfeng@ieee.org
https://doi.org/10.1016/j.neucom.2022.04.102
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Fig. 1. (a) compares a state-of-the-art ACR method [1] and the proposed rACR under highly varied lightings (left) and similar lightings (right). Bottom-left subfigures are
lighting probes indicating illumination distribution. Since highly varied illuminations lead to very different image appearances, 2D feature point matching inevitably fails,
thus causing the ACR process to collapse; while rACR works well in both situations. (b) shows 4 examples of outdoor fine-grained change detection (FGCD) oriented ACR and
rACR results. Under varied illuminations, ACR fails in 3 scenes (AFD P3). Note, we use AFD (average feature-point displacement) [1] to evaluate the camera relocalization
accuracy. The smaller the AFD score, the more accurate the camera. relocalization.
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robustness to lighting variations, there is no mature ACR solution
to support FGCD of outdoor scenes with significant illumination
variation between twice observations.

Besides, convergence speed is another critical factor for the fea-
sibility of ACR. Since existing ACR methods cannot guarantee con-
verge, i.e., easily fail, under highly varied illuminations, their speed
in outdoor scenes is another issue.

In this paper, we propose a fast and robust ACR scheme, i,.e.,
rACR, that works well under highly varied illuminations, thus is
much more feasible for outdoor scenes. The proposed rACR scheme
relies on the correspondence of current and reference 3D point
clouds, which can be easily acquired by a proper visual SLAM
engine (VSE) [7] in real time, to register the two camera coordinate
systems and circumvent 2D feature matching, thus avoids the neg-
ative effects of varied lightings to ACR. Specifically, the core of the
proposed rACR is a scale-aware point cloud alignment method,
which jointly considers both geometry, photometric alignment
errors between current and reference point clouds, and the poses
of corresponding VSE keyframes. We then present a two-stage
coarse-to-fine optimization algorithm, fast alignment and fine-
grained alignment, to effectively register twice observations and
generate current camera adjustment motion. Besides, to achieve
fast convergence speed, we present an efficient algebraic estimation
Fig. 2. Working flow of the proposed rACR scheme, which mainly consists of an initializat
adjustment thread. See text for details.
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of real 3D scale factor for 3D point cloud, avoiding the slow iterative
bisection approaching process in the existing ACR method [1].
Finally, we compose a fast parallel rACR scheme, consisting of three
parallel threads, i.e., the adjustment thread, alignment thread, VSE
thread, and an initialization procedure, see Fig. 2 for details. Exten-
sive experiments verify that the proposed rACR is able to averagely
achieve 5� faster convergence speed and much better accuracy
over the state-of-the-art ACR method [1] under varied illumina-
tions. To our best knowledge, the proposed rACR, for the first time,
successfully supports the outdoor FGCD task.

2. Related work

2.1. Active camera relocalization

Existing camera relocalization research can be divided into two
categories [1], static camera relocalization (SCR) and active camera
relocalization (ACR). SCR finds the closest image to the reference
one from a large image database via appearance feature similarity
[8,9], or use SfM and visual SLAM to register current camera of the
input image into the global coordinate frame of an existing 3D
scene [10]. Since SCR only conducts virtual camera alignment,
state-of-the-art SCR methods can only achieve cm-level
ion step and three parallel threads, i.e., the VSE thread, the alignment thread and the



1 We consider the illumination is stable iff the VSE can work well. In fact, for
outdoor scenes, except for the dawn and nightfall, the illumination of a day is
generally stable and changes slowly within a short time period.
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translational relocalization accuracy and degree-level angular accu-
racy [11]. The second type is active camera relocalization (ACR),
aiming to physically relocate current camera to the same pose of
the reference image. Recently, using a precision robotic platform
to adjust camera pose, Tian et al. [1] propose a hand-eye calibra-
tion free ACR algorithm from a single 2D reference image and
achieve much higher 0.1 mm-level relocalization accuracy. Fur-
thermore, based on the original ACR, depth camera based ACR
[12] and ACR used in mobile device [13,6] are also proposed.
Besides, low-cost hand-eye calibration [14,15] can effectively ben-
efit the convergence of ACR. Except for camera pose, actively repro-
ducing lighting condition has also been studied [16] recently.
Despite the diversity and successes of previous SCR and ACR meth-
ods, their convergence highly depends on the consistent imaging
conditions, without which the foundation of relocalization conver-
gence and accuracy is undermined.

2.2. Visual SLAM

Simultaneous Localization and Mapping (SLAM) constructs the
scene 3D map of an unknown environment and simultaneously
acquires the camera pose in real time. RGB-based SLAM includes
monocular SLAM [7] and stereo SLAM [17]. So far, successful
RGBD-based SLAM systems are RGBD-SLAMv2 [18], ORB-SLAM2
[19], Stereo DSO [20], KinectFusion [21], Kintinuous [22], Elas-
ticFusion [23] and BundleFusion [24]. The fusion-based SLAM
methods focus on accurate 3D reconstruction than real-time cam-
era pose estimation. Recently, the generalization power of convo-
lution neural networks (CNN) has also been applied in visual
SLAM [25]. In this paper, we use DSO SLAM [7] as the visual SLAM
engine (VSE) in our rACR scheme.

2.3. 3D point cloud alignment

Our work is also highly related to 3D point cloud alignment. A
typical workflow of point cloud alignment consists of global align-
ment and local refinement [26]. The former step computes an ini-
tial relative pose between two point clouds and the latter part
further refines the initial estimation to obtain a better alignment.
Classical global alignment methods find three pairs of correspond-
ing points by RANSAC to align two point clouds [27,28]. However,
they have worst case Oðn3Þ time complexity. Later, Aiger et al. [29]
propose a 4PCS algorithm to achieve a quadratic time complexity.
Recently, based on 4PCS, a super4PCS method [30] with linear time
complexity has been proposed. The most popular local alignment
approaches are Iterative Closest Points (ICP) [31] and its variants
[32,33]. To further improve the robustness of ICP algorithm, Boua-
ziz et al. [34] introduce a sparse ICP formulation to deal with out-
liers and incomplete data.

2.4. 2D and 3D feature representation

Feature representation for 2D or 3D data plays an important
role in many computer vision tasks. In the aspect of 2D feature rep-
resentation, previous learning based methods replace the descrip-
tor [35] or detector [36] with a learnable alternative. After that, Yi
et al. [37] first propose a fully learning based architecture to jointly
solve description and detection problems. Luo et al. [38] introduce
deformable convolution and local transformation to further
encourage keypoints to be reliable and repeatable. Besides, some
methods [39,40] employ attention mechanism for keypoint selec-
tion to improve the robustness for challenging situations such as
background clutter, partial occlusion. Chen et al. [41] propose a
separation training scheme to improve the matching accuracy
under varied illuminations. As for 3D feature representation, early
13
methods [42] extract 3D keypoint description from multi-view
images. In contrast, Gojcic et al. [43] construct descriptors by con-
verting 3D patches into smoothed density value representations.
Liu et al. [44] propose a new RS-CNN to learn the geometric topol-
ogy constraint among points, which leads to much shape aware-
ness and robustness. Recently, Qiu et al. [45] try to exploit 3D
point features from both the geometric and semantic information,
which achieves excellent performance for semantic segmentation
task.

3. Fast and robust ACR in the wild

3.1. Problem formulation and overview

Camera pose (or rigid body motion) T 2 SEð3Þ can be expressed
as a 3D rotation R 2 SOð3Þ and a 3D translation t 2 R3, i.e.,

T ¼ R t
0T 1

� �
. Following the notations in [1], we use a two-tuple

form, i.e., T ’ hR; ti, instead of the above representation in the rest
of the paper for simplicity. We consider the illumination is stable
during once observation1, thus we can obtain an effective 3D point
cloud by a proper visual SLAM engine (VSE). As shown in Fig. 3, we
have MAX ¼ XMB, where X ’ hRX; tXi is the hand-eye relative pose,
MA and MB denote the motions of eye (camera) and hand (robotic
platform), respectively. Let the reference 3D point cloud space be
the world coordinate system. We seek the optimal hand motion

M̂B and physically execute it to actively relocalize the camera from

initial pose ~T0
A to the reference pose Tref

A ’ hRref
A ; trefA i. Note, ~T0

A is the
initial camera pose of current observation within the world coordi-
nate system, and T0

A is the corresponding pose of ~T0
A within current

3D point cloud space. Thus, the rACR problem can be formulated as

M̂B ¼ argmin
MB

kXMBX
�1~T0

A � Tref
A k2F ; ð1Þ

where k � kF is the Frobenius norm. Generally, execute M̂B in one
shot to achieve the goal is impractical because of the platform’s
mechanical error or motion’s calculation error. A practical scheme
is to find a series of camera adjustment motions to asymptotically

approach M̂B. Thus, we have

M̂i
B ¼ argminMi

B
kXMi

BX
�1~Ti

A � Tref
A k2F ;

M̂B ¼
Y0
i¼h

M̂i
B;

ð2Þ

where h is the camera adjustment times, ~Ti
A ’ h~Ri

A;
~tiAi and M̂i

B

denote the current camera pose in world coordinate system and
optimal hand motion of the ith adjustment, respectively. Let

Ti
A ’ hRi

A; t
i
Ai be the current camera pose in current point cloud

space. Let ri
P and Ti

P be the relative scale factor and relative pose

between reference point cloud Pref and current point clouds Pi,

respectively. Then, we have ~Ti
A ¼ Ti

P
Ri

A

�1 �ri
PR

i
A

�1
tiA

0T 1

" #
. Hence,

refer to Eq. (2), the optimal hand motion M̂i
B can be expressed as

M̂i
B ¼ X�1Tref

A
Ri

A

�1 �ri
PR

i
A

�1
tiA

0T 1

" #�1

ðTi
PÞ

�1
X: ð3Þ



Fig. 3. Illustration of the key notations of rACR.
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Fig. 2 shows the overview of the proposed rACR scheme. The
input of rACR is the reference observation (point cloud Pref and

camera pose Tref
A ). The output of rACR is the relocalization result,

i.e., current observation (point cloud Pcur and camera pose Tcur
A ).

The proposed rACR scheme consists of an initialization step and
three parallel threads, i.e., the VSE thread, the alignment thread
and the adjustment thread. The initialization step calculates the
hand-eye relative pose X and real scale factor s of current point
cloud, since the point cloud acquired from monocular VSE has no
real scale. The VSE thread generates the latest current point cloud
P and camera pose TA in real time. The alignment thread focuses
on high-quality scale-aware point cloud alignment, which calcu-
lates the relative pose TP and relative scale factor rP between P
and Pref . The adjustment thread generates motion M̂i

B by Eq. (3)
and execution it by robotic platform for ith adjustment.

3.2. Initialization

Let MA ’ hRA; tAi and MB ’ hRB; tBi. We divide MAX ¼ XMB into
rotation and translation components,

RARX ¼ RXRB; ð4Þ

tA þ ðRA � I3ÞtX ¼ RXtB; ð5Þ
where I3 is 3� 3 identity matrix. Note, RA (acquired from VSE), RB

and tB (acquired from robotic platform) are all known. Hence, using
classical hand-eye calibration method [14], we can first solve RX

through at least twice platform movements. For a monocular VSE,
the calculated camera translation tVSE usually has no real scale.
Let s be the real scale factor, then we have tA ¼ stVSE. Hence, Eq.
(5) can be rewritten as

ðRA � I3ÞtX ¼ �stVSE þ RXtB: ð6Þ
Since RA is a 3D rotation matrix, rankðRA � I3Þ � 2 [14]. There

exists vector k ¼ ½k1; k2; k3�T that satisfies: 1) k– 0, and 2)

kTðRA � I3Þ ¼ 0T. We left multiply kT on both sides of Eq. (6),
yielding

kTðRA � I3ÞtX ¼ kTð�stVSE þ RXtBÞ: ð7Þ

According to Eq. (7) and kTðRA � I3Þ ¼ 0T, we have

kTð�stVSE þ RXtBÞ ¼ 0. Therefore,

s ¼ kTtVSE
kTðRXtBÞ

: ð8Þ

That is, after solving RX, we can faithfully calculate s by Eq. (8).
Then, through at least twice platform movements, we can easily
solve tX using Eq. (6).
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3.3. VSE thread

As shown in Fig. 2, let TVSE ’ hRVSE; tVSEi and PVSE be the cam-
era pose and point cloud taken from VSE respectively, where
PVSE and TVSE have no real scale. Given the real scale factor s
acquired from the initialization step, we have P ¼ sPVSE and
TA ’ hRA; tAi ¼ hRVSE; stVSEi, where TA and P are the camera pose
and point cloud with real scale. In a word, the VSE thread main-
tains the latest current point cloud P and camera pose TA in real
time. In fact, it is not that any VSE would be suited to our rACR.
Generally, existing VSEs can be divided into direct VSE and indi-
rect VSE, respectively depending on photometric constraints and
2D feature matchings to reconstruct 3D point cloud. Direct VSE
can generate semi-dense 3D point cloud but it is not robust to
camera’s rapid motion. In contrast, indirect VSE works well
under camera’s rapid motion but generates sparse 3D point
cloud. For the rACR problem, first, we usually use a robotic plat-
form to adjust camera, so camera’s rapid motion usually would
not happen. Second, semi-dense 3D point cloud encodes more
scene structural information and it is obviously more conducive
to 3D alignment than the sparse one. Hence, we use a state-of-
the-art direct VSE, DSO [7], in this paper. Refer to the experi-
ment part for the quantitative comparisons of direct VSE and
indirect VSE to rACR accuracy.

3.4. Alignment thread

The alignment thread aims to calculate the relative pose TP and
relative scale factor rP between reference and current point cloud.
The essence is to solve a scale-aware point cloud alignment
problem.

3.4.1. Scale-aware point cloud alignment
We formulate the scale-aware point cloud alignment as an opti-

mization problem considering both geometric and photometric
alignment errors. The geometric alignment error Eg can be written
as

Eg ¼
X
m

ðkRPðrPpNðmÞÞ þ tP � pref
m k22; ð9Þ

where pref
m indicates the coordinate of mth 3D point in Pref ;NðmÞ

denotes the index of the nearest 3D point of pref
m in current point

cloud P;pNðmÞ is the coordinate of NðmÞth 3D point in P. On the
other hand, VSE maintains multiple keyframes. For each 3D point
in Pref , the intensities of its 2D projection pixels in all current key-
frames should be the same. Let Tu

K ’ hRu
K; t

u
Ki be the camera pose of

uth current keyframe image Du, then we have ~Tu
K ¼ Ti

P
Ru

K ri
Pt

u
K

0T 1

� �
,
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where ~Tu
K is the camera pose of uth current keyframe in the world

coordinate system. Hence, we can define the photometric alignment
error Ep as

Ep ¼ 1
jKj2

X
m

u;v 2 K

kDuðpð~Tu
K;p

ref
m ÞÞ � Dvðpð~TvK;pref

m ÞÞkd;
ð10Þ

where k � kd is the Huber norm, K indicates the index set of all key-

frames, jKj denotes the keyframe number, jKj2 is a normalization
factor, pð~Tu

K;p
ref
m Þ indicates the corresponding 2D projection of 3D

point pref
m under camera pose ~Tu

K. Then, the scale-aware point cloud
alignment function should be

fr̂P ; R̂P ; t̂Pg ¼ argminfrP ;RP ;tPgaEg þ ð1� aÞEp; ð11Þ
where a is the term weight. Directly solving Eq. (11) needs non-
linear optimization, which is time-consuming and easily falls into
bad local minima if the initialization is not good. To solve this
problem, we present an effective two-stage optimization strategy
to conduct fast alignment at first, followed by fine-grained align-
ment when both poses and scales of twice observations are
almost registered.

3.4.2. Fast alignment
we first carry out fast alignment by only optimizing the geo-

metric alignment error to achieve quick registration of reference
and current point clouds,

fr̂P ; R̂P ; t̂Pg ¼ argminfrP ;RP ;tPgEg: ð12Þ
Specifically, we adopt a two-step strategy to alternately opti-

mize the relative pose fR̂P ; t̂Pg and scale factor r̂P ,

step1 : fR̂P ; t̂Pg ¼ argminfRP ;tPgEg; ð13Þ

step2 : r̂P ¼ argminrPEg: ð14Þ
Note, Eq. (13) is a classical point cloud alignment problem that

can be solved by the sparse ICP algorithm [34]. Besides, Eq. (14) can
be directly solved in closed-form,

r̂P ¼

X
m¼1

ðR̂PpNðmÞÞðpref
m �t̂P ÞTX

m¼1

ðR̂PpNðmÞÞðR̂PpNðmÞÞ
T
: ð15Þ

We repeat such two-step optimization process until
jjMTP � I4jj 6 sT and MrP 6 sr, where I4 is a 4�4 identity matrix,
MTP and MrP denote the changes of TP and rP between two con-
tiguous iterations, respectively. In our experiments, we set
sT ¼ 10�4 and sr ¼ 10�5. Since both the above two steps can be
solved in closed-form, rP and TP can quickly converge to a reason-
ably good solution.

3.4.3. Fine-grained alignment
After fast alignment, current and reference point clouds are

almost registered. Using the calculated r̂P and T̂P (i.e., R̂P ; t̂P)
by fast alignment as the initial value, we can conduct fine-
grained alignment by optimizing the full scale-aware point
cloud alignment function, Eq. (11). In fact, to achieve finer scale
alignment, the small estimation error of camera poses Tu

K of
current keyframes (1 6 u 6 jKj) done by the VSE thread, may
still influence the alignment accuracy and cannot be ignored.
Hence, we need first to optimize the camera poses of all cur-
rent keyframes by minimizing the photometric alignment error
of current point cloud, and then alternately optimize TP and rP
in Eq. (11),
15
step1 : fT̂1

K; . . . ; T̂
jKj
K g ¼

argminfT1K ;...;T
jKj
K g

P
m

u;v2K

kDuðpðTu
K;pmÞÞ � DvðpðTvK;pmÞÞkd; ð16Þ

step2 : fR̂P ; t̂Pg ¼ argminfRP ;tPgaEg þ ð1� aÞEp; ð17Þ

step3 : r̂P ¼ argminrPaEg þ ð1� aÞEp; ð18Þ
where pm denotes the coordinate of mth 3D point in current point
cloud P. We use the LM algorithm to optimize Eqs. (16)–(18). Note,
the optimization in fine-grained alignment thread is never-
stopping. The alignment thread continuously provides the latest rel-
ative pose and relative scale between reference and current point
clouds.

We consider both geometric and photometric alignment errors
in Eq. (11). In fact, if mth reference 3D point pref

m cannot be
observed by both keyframes Du and Dv due to scene’s self-
occlusion, the corresponding photometric constraint is inaccurate
and may negatively affect the alignment accuracy. To solve this
problem, for those reference 3D points that project to the same
2D position in a keyframe, we only reserve the corresponding pho-
tometric constraint term of the reference 3D point with the nearest
distance to the camera center.

3.5. Adjustment thread

The adjustment thread achieves camera motion generation and
execution. Specifically, in ith camera adjustment, we take the latest
current point cloud Pi from the VSE thread, and take the latest

point cloud relative pose Ti
P and relative scale factor ri

P from the
alignment thread. Then we can calculate the optimal hand motion

M̂i
B according to Eq. (3). We consider rACR is finished if the optimal

hand motion is small enough. Let gi ¼ jjM̂i
B � I4jj, where I4 indicates

4� 4 identity matrix. If gi 6 g, we consider rACR converges. Other-

wise, we adjust the robotic platform by M̂i
B. We set g ¼ 10�4 in our

experiments.

3.6. Synchronization

The three independent threads together achieve a fast and effi-
cient rACR in practice. Specifically, as shown in Fig. 2, given the ref-

erence observation (Tref
A ;Pref ), we first set s ¼ 1 and start the VSE

thread (note, we need to randomly move the camera around the
objective scene to make the VSE work). After that, we conduct
the initialization to update s and calibrate the hand-eye relative
pose X. Then VSE thread can generate latest current point cloud
P and camera pose TA with real scale. Next, we start the alignment
thread. The alignment thread takes as input the reference point
cloud Pref and the latest current point cloud P taken from the
VSE thread, and ceaselessly calculates the latest point cloud rela-
tive pose TP and relative scale factor rP . We then start the adjust-
ment thread. In ith camera adjustment, the adjustment thread

takes the latest Ti
A and latest Ti

P ;ri
P from the VSE thread and the

alignment thread respectively, then calculates the camera motion

M̂i
B and executes it by the robotic platform.
In this paper, we use DSO SLAM [7] as our VSE. On average, the

VSE thread can achieve 15 FPS on a commercial laptop with i7 CPU.
In the alignment thread, the fast alignment stage achieves 5 FPS
and the fine-grained alignment stage usually needs 5s to run one
time. The platform adjustment is relatively slow, averagely spend-
ing 1.5s to move 1 cm for the robotic platform we used. Different
from the widely used serial scheme of the existing ACR methods,
the proposed parallel scheme has faster convergence rate. Under
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the serial scheme, the overall system would come to a standstill
when platform is moving. On the contrary, the parallel rACR
scheme guarantees the VSE thread and alignment thread running
continuously, no matter the platform is moving or not.
3.7. Convergence analysis

As shown in Fig. 3, the aim of rACR is to move the current cam-
era (eye) to the pose of the reference one by multiple camera

adjustments, i.e., rACR aims to make limi!1~Ti
A ¼ Tref

A . Since
~Ti
A ’ h~Ri

A;
~tiAi and Tref

A ’ hRref
A ; trefA i, rACR convergence is equivalent

to the convergences of the rotation and translation components,

i.e., limi!1~Ri
A ¼ Rref

A and limi!1~tiA ¼ trefA . In the following analysis,
we use the symbol with superscript ‘^’ and the original symbol
to respectively denote the real and calculated ones. Besides, we fol-
low the notations in [1] and use R ’ hh; �ei ’ hcos h

2 ; �e sin
h
2ito indi-

cate the equivalence of the rotation matrix, the angle-axis and
the quaternion representations. For instance,

R̂X ’ hĥX; �̂eXi ’ hcos ĥX
2 ; �̂eX sin ĥX

2 i and

RX ’ hhX; �eXi ’ hcos hX
2 ; �eX sin hX

2 i respectively denote the three kinds
of representations of the real and calculated hand-eye relative
pose.

We have limi!1~Ri
A ¼ Rref

A if jĥX � hXj 6 p
3, where ĥX and hX are the

angles of angle-axis representation of R̂X and RX. Specifically, let

Ti ’ hRi; tii be the relative pose between the reference and current

cameras in the world coordinate system, i.e., Ti ¼ ~Ti
AðTref

A Þ�1
, then

we have Ri ¼ ~Ri
AðRref

A Þ�1
. Following the derivation of Theorem 1

in [1], we can easily get limi!1Ri ¼ I3 if h 6 p
3, where hh; �eiis the

angle-axis representation of RXðR̂XÞ
�1
. Therefore, we know

limi!1~Ri
A ¼ Rref

A if h 6 p
3. Next, under the quaternion representation,

let RXðR̂XÞ
�1 ’ hcos h

2 ; �e sin
h
2i. According to the Rodrigues’ formula,

we further have
cos h
2 ¼ cos ĥX

2 cos hX
2 þ sin ĥX

2 sin hX
2 e

�
X � ê�

X

6 cos ĥX
2 cos hX

2 þ sin ĥX
2 sin hX

2 ¼ cos ĥX�hX
2 :

ð19Þ

It means that h P jĥX � hXj. Thus, we have limi!1~Ri
A ¼ Rref

A if

jĥX � hXj 6 p
3. In fact, Theorem 1 in [1] proves that the current cam-

era pose would converge to the reference one if ĥX 6 p
3 and hX ¼ 0,

which is a particular case of rACR convergence process.
Table 1
2D matching performance under varied lightings for SIFT, TILDE [36]+SIFT, DELF [40] and

scene 1

light 1 light 2 light 3

SIFT #match 2/4 5/5 29/34
a-rot NaN 0.41 0.65
AFD NaN 10.1 13.3

TILDE + SIFT #match 6/18 59/97 112/150
a-rot 4.69 0.82 0.16
AFD 57.4 17.5 2.84

DELF #match 201/367 197/371 366/438
a-rot 1.86 1.32 0.11
AFD 26.1 23.5 2.4

ASLFeat #match 11/14 107/145 241/330
a-rot 0.14 2.05 2.23
AFD 2.87 21.5 23.4
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After R̂A converges to Rref
A , we have limi!1~tiA ¼ trefA if

jĥX � hXj < p
4. Specifically, following the derivation of Eq. (28) in

[1], we can get ktik2 � ktiþ1k2 P ðsŝÞ2ð2 cos2 h� 1Þ. When

h < p
4 ;2 cos

2 h� 1 > 0, i.e., ktik > ktiþ1k. Hence, if camera transla-

tion occurs infinite times, ktik certainly converges to zero, i.e.,

limi!1ti ¼ 0T if h < p
4. Besides, since Pi ’ hRi; tii ¼ ~Ti

AðTref
A Þ�1

, we

have ti ¼ �~Ri
AðRref

A Þ�1
trefA þ ~tiA. Since R̂A has converged to Rref

A , then
ti ¼ ~tiA � trefA . Therefore, we know limi!1~tiA ¼ trefA if h < p

4. Refer to
the analysis of the rotation convergence, we know h < p

4 is equiva-

lent to jĥX � hXj < p
4. Hence, we have limi!1~tiA ¼ trefA if jĥX � hXj < p

4.

In a word, we have limi!1~Ti
A ¼ Tref

A if jĥX � hXj < p
4. That is, the

proposed rACR scheme converges if the angle difference of the real
hand-eye relative pose and the calculated one is less than p

4. In fact,
the above convergence condition can be easily satisfied in practice.
Note, from the above analysis, we can find that the convergence is
independent of the calculated real scale factor s. This is because the
multi-adjustment strategy can guarantee that camera asymptoti-
cally approaches the target. Certainly, the more accurate the calcu-
lated camera relative pose and the real scale factor, the fewer
iteration number the rACR needs. In contrast, the state-of-the-art
ACR method [1] just guesses the hand-eye relative pose as identity
matrix and uses a bisection strategy to handle the unknown scale
problem, which obviously needs more iteration number than the
proposed rACR.
4. Discussions

We then analyze why 2D matching based ACR is easy to fail
under highly varied lightings. The reasons mainly have two
aspects. First, previous research [36] reports that 2D matching
(e.g., SIFT) is robust to lighting variation for distant near-planar
scenes, e.g., buildings. But in this paper, we mainly focus on
close-range high-value scenes, e.g., culture heritages, which usu-
ally have rich surface 3D micro-structures and very few pure-
planar regions. Therefore, varied lightings easily cause local
appearance differences of images, further lead to higher wrong
matching rate. To verify it, we first capture a reference image under
environment lighting, then we keep the camera still and capture
current images under varied lighting conditions (three different
side lightings and the night lighting). Table 1 shows the 2D feature
matching accuracy (marked as ‘‘#match”, ‘‘A/B” denotes right/total
matching number) and pose estimation accuracy by 5-point algo-
rithm [46] (angle value of rotation’s angle-axis form, marked as
ASLFeat [38]. See text for details.

scene 2

night light 1 light 2 light 3 night

2/6 35/47 5/13 28/70 1/19
10.4 0.34 4.62 0.49 3
136 5.72 67 10.7 54.7

180/265 74/148 13/39 151/310 51/327
0.18 1.36 1.58 0.46 0.55
3.61 23.7 19.9 8.59 11.2

289/377 279/451 178/294 385/551 265/373
0.21 0.29 0.37 0.69 0.12
3.95 6.53 8.3 10.5 2.72

794/1164 231/466 27/97 340/826 357/1705
0.68 0.22 1.53 5.05 0.78
9.64 3.91 22.2 54.8 14.8
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‘‘a-rot”) for SIFT, TILDE [36]+SIFT, DELF [40] and ASLFeat [38] for
two scenes, where TILDE is a learning based keypoint detector,
TILDE + SIFT means combining TILDE detector and SIFT descriptor,
DELF and ASLFeat are two state-of-the-art learning based 2D fea-
ture detectors and descriptors. We use the official implementa-
tions of these methods to conduct the above experiments. We
consider one matching is wrong if the Euclidean distance is larger
than 1. From Table 1, we can find that nearly half of matchings are
wrong for most cases. Higher wrong matching rate causes inaccu-
rate pose estimation and finally results in ACR failure (AFD� 3).

Second, highly varied lighting may lead to fewer 2D matching
number. In this case, even though the wrong matching rate is
lower, it also easily leads to inaccurate pose estimation and further
causes ACR failure, see the results marked red in Table 1. In fact, if
we can collect enough training data for all kinds of scenes and
lighting conditions, the learning based 2D matching really has
the possibility of supporting ACR under highly varied lightings.
But this manner is impractical in real-world application. In sum-
mary, we can say that 2D matching is unstable and easy to fail
under highly varied lighting and cannot support ACR in outdoor.

We then analyze why 3D alignment based rACR works well
under varied lightings. First, 3D alignment takes as input two point
clouds rather than the images, so 3D alignment itself is irrelevant
to lighting variation between twice observation. Second, since
lighting is usually stable during once observation, the point cloud
taken from VSE is reliable. Hence, the only worry is the misalign-
ment problem. Specifically, 3D alignment needs to find and align
the corresponding 3D points between two point clouds (see Eq.
(9)). However, we cannot guarantee the same 3D point can be
faithfully reconstructed in both reference and current point clouds
especially under significant lighting variation. Hence, the align-
ments of those ‘‘not repetitive” 3D points are obviously wrong
and seemingly influence point cloud alignment accuracy. In fact,
our rACR can always work well in extensive experiments. This is
because we use DSO [7] (direct SLAM) as our VSE, which can gen-
erate semi-dense point cloud. Therefore, the ‘‘not repetitive” 3D
point would be aligned to the 3D point that has very close distance
to ground truth. Hence, these alignment errors are usually small
and would not influence rACR accuracy.

To verify the above analysis, we add noises (r� point cloud
width) of different magnitude r (1% � 16%) on reference point to
simulate ‘‘not repetitive” 3D points. Then we run rACR 3 times
for 3 different scenes. The relation of noise magnitude and AFD
[1] (used to evaluate ACR accuracy) is shown in Fig. 4. Besides,
Fig. 4 also shows the visual point cloud alignment results of one
certain scene under different noise magnitudes. Note, in this paper,
we consider camera relocalization is successful if the correspond-
ing AFD is less than 3. Besides, see Fig. 5, the horizontal axis indi-
cates varied lightings, the vertical axis denotes the offset
magnitudes of point clouds after 3D alignment. Fig. 5 shows that
the offset magnitude of 3D alignment is usually lower than 2%
under varied lightings. In Fig. 4, we have verify that our rACR can
work well (AFD < 3) when the noise magnitude r of point cloud
is less than 8%. Besides, Fig. 5 also shows that the noise magnitude
of point cloud is usually less than 2% under varied lighting condi-
tions. Therefore, combining the results of Fig. 4 and Fig. 5, we can
say that r less than 8% is easy to meet in practice, and the lighting
variations do not influence our rACR performance.
5. Experimental results

5.1. Setup

We build 10 indoor scenes (S1-10) and 10 outdoor scenes (S11-
20) to benchmark our rACR method. For indoor scenes, we use an
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LED point light source mounted on a robotic arm to produce differ-
ent side lighting conditions. For outdoor scenes, the lighting condi-
tion differences between twice observations usually come from the
ambient illumination variations, e.g., weather differences or sun-
shine direction changes.

We compare the proposed rACR approach with homography-
based camera relocalization (H-CR) [3], computational rephotogra-
phy (CRP) [6] and the active camera relocalization method (ACR)
[1]. H-CR and CRP are manual methods. ACR is the state-of-the-
art camera relocalization method without hand-eye calibration
and relies on a robotic platform to automatically adjust camera.
All of these methods are based on SIFT feature matching. Besides,
as shown in Table 1, we find TILDE + SIFT and DELF are better than
SIFT feature for some cases. Thus, for more fair comparison, we
replace SIFT with TILDE + SIFT and DELF in ACR method to generate
two new baselines, i.e., ACR_TILDE and ACR_DELF.

Following the ACR method [1], we use feature-point displace-
ment flow (FDF) (a sparse displacement vector field of matched fea-
ture points) and average feature point displacement (AFD) to
quantitatively measure relocalization accuracy. Note, since feature
point matchings easily fail under highly varied illuminations,
which may impair the fairness of FDF and AFD measure. Therefore,
after camera relocalization, we restore the reference illumination
by controlling the robotic arm and capture an auxiliary current
image to measure FDF and AFD for indoor scenes. For outdoor sce-
nes, we uniformly divide the image into a regular grid and manu-
ally select 20–100 matching points between current and reference
images to generate FDF and AFD.

5.2. Comparative study

5.2.1. Relocalization accuracy comparison
For indoor scenes, we capture the reference observation under

front lighting and conduct our rACR and baselines under an arbi-
trary side lighting. As for the outdoor scenes, after capturing the
reference observations, we conduct camera relocalization after
several days. S14-15 are observed under day-night variations,
S12, S16-17 are observed at the same time (similar sunshine direc-
tion) but different days, the others are observed at different time
(different sunshine direction). Note, for all the comparison experi-
ments, we place the camera to the same initial pose (via the robotic
platform) to fairly compare the relocalization performance. The
comparison results are shown in Table 2 and parts of the qualita-
tive comparison results are shown in Fig. 14. The red color denotes
camera relocalization failure (AFD > 3). We can clearly see that the
proposed rACR outperforms baselines in all cases. Moreover, CRP
and HCR fail on all 20 scenes. ACR, ACR_TILDE and ACR_DELF fail
for more than half of cases. The chief causes of the lower perfor-
mance of the existing methods compared with our rACR, have
the following two aspects. First, these baselines are more easily
failed under extreme lighting difference (e.g., S3, S14-15), lighting
difference may cause a large number of local shadow or shading
variations, further influences the feature matching accuracy. Sec-
ond, for weakly-textured scenes, 2D feature based method itself
is prone to failure, even though lighting variation is not significant
(e.g., S1-2). As shown in Table 2, considering that the original ACR
method is just slightly worse than ACR_TILDE and ACR_DELF,
which need high performance computing resources and are not
suitable for outdoor, so we only compare our rACR with the origi-
nal ACR in the rest of our experiments.

In this paper, we use a direct VSE (DSO SLAM [7]) in our rACR.
We employ a state-of-the-art indirect VSE, ORB [19], and compare
the ORB based rACR (rACR-ORB) with the original one. Fig. 6 shows
the comparison results of the two methods for 5 scenes (S1–5)
under varied lightings. We can see that the proposed rACR
(rACR-DSO) achieves much more better relocalization accuracy



Fig. 4. Evaluation of our rACR under different noise magnitudes of point cloud. The orange and blue denote the reference and current point clouds, respectively.

Fig. 5. Relation of the point cloud offset and different lighting conditions. Combining Fig. 4, we can find rACR is robust to varied lighting. The orange and blue denote the
reference and current point clouds, respectively.

Table 2
Average AFD scores of rACR and the baselines under 20 scenes. The red color denotes camera relocalization failure (AFD > 3).
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than rACR-ORB. The results also confirm the analysis (refer to Sec-
tion 3.3) about why we choose direct VSE rather than indirect VSE
in our rACR.
5.2.2. Comparison under varied illuminations
The state-of-the-art method ACR [1] employs 2D feature match-

ing and 5-point algorithm to estimate the relative pose between
reference and current camera. On the contrary, our rACR uses 3D
point clouds to estimate the relative pose, which can greatly
improve the robustness to highly varied illuminations between
twice observations. To verify this, we quantitatively evaluate the
robustness of our rACR and baseline ACR [1] to varied illuminations
18
on the 10 indoor scenes S1–10. Specifically, we first capture the
reference observation under the particular 12 o’clock lighting
direction via controlling the robotic arm (mounted with the LED
light source). After that, we conduct the two methods under 12 dif-
ferent current lighting directions ranging from 1 o’clock to 12
o’clock, respectively. Then we evaluate the relocalization accuracy
using AFD score. For each indoor scene, we independently conduct
such experiments 10 times and the results are shown in Fig. 7. We
can see both AFD average and AFD variance of our rACR are small
under all the illumination directions. It means rACR exhibits very
good robustness to varied illuminations. In contrast, ACR method
is very sensitive to lighting differences. The ACR method can only



Fig. 7. AFDs of rACR and ACR under varied illumination directions. The reference image is captured under 12 o’clock direction.

Fig. 6. Quantitative comparisons of the direct VSE based rACR (rACR-DSO) and the indirect VSE based rACR (rACR-ORB) under varied side lightings.
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achieve reliable relocalization results under similar illumination
directions of the reference one, e.g., 1, 2, 10 and 11 o’clock, but
the relocalization error rapidly grows if the current illumination
directions are far away from the reference one. The dashed line
in Fig. 7 denotes the line that AFD ¼ 3 and we consider camera
relocalization succeeds if AFD 6 3.
5.2.3. Speed and convergence comparison
The existing ACR baseline [1] uses a bisection strategy to solve

the scale unknown problem of the estimated relative pose by 2D
feature matching. In short, the bisection strategy first guesses an
initial translation scale, then the translation scale is reduced to half
its original value if the translation directions of the estimated rel-
ative poses of successive two iterations are opposite, otherwise the
translation scale remains the same. On the contrary, we propose a
simple but effective point cloud real scale estimation method (see
Section 3.2 for details) to avoid the slower bisection adjustment
strategy. Therefore, our rACR theoretically has faster convergence
speed than the ACR baseline. To verify this, we compare the con-
vergence speed of the two methods. Since the ACR method only
succeeds for scenes S7–9, S12–13 and S16, for a fair comparison,
we only use the 6 scenes to compare the speed and convergence
of ACR and rACR. Table 3 shows the average time spent compar-
isons of ACR and rACR, involving point cloud acquiring, camera
pose estimation, and the overall process. First, due to the success
of recent visual SLAM methods [7], we just need a dozen seconds
Table 3
Average time spent comparisons of ACR and rACR.

pt cloud camera

ACR – 4.8
rACR 15.2s 0.2

ACR_w/X – 4.8
rACR_w/oX 14.6s 0.2
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to acquire reliable point clouds. Second, rACR directly gets the cur-
rent camera pose from VSE, which takes very little time. Besides,
the proposed parallel scheme also improves the convergence rate.
In contrast, ACR needs 2D feature matching and pose estimation
algorithm to calculate the camera relative pose, that process usu-
ally costs several seconds. Third, since the proposed rACR can also
obtain the hand-eye relation and percept the real scale of scene,
rACR needs not the bisection approaching strategy like the ACR
method. Therefore, the iteration number of rACR is much fewer
than ACR. In a word, although rACR needs additional point cloud
acquirement time, the faster pose estimation step and fewer itera-
tion number help rACR to achieve faster camera relocalization
speed than ACR.

Besides, to further compare the convergence speed of our rACR
and existing ACR method, we design a new version for each of the
two methods. As shown in Table 3, ‘‘_w/X” and ‘‘_w/oX” denotes
the method with or without the estimated hand-eye relative pose,
respectively. That is, rACR_w/oX means we guess the hand-eye rel-
ative pose as identity matrix in our rACR. We can find that ACR_w/
X and rACR respectively have faster convergence speed than ACR
and rACR_w/oX, which shows that calculating hand-eye pose can
effectively improve convergence speed. Besides, ACR_w/X is still
much slower than rACR and rACR_w/oX. This is because our
method avoids time-consuming bisection strategy by estimating
the real scale of relative pose between reference and current
images.
pose overall #iteration

s 316.7s 18.6
s 61.1s 5.3

s 256.4s 14.3
s 102.6s 8.1
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To compare the convergence of ACR and rACR, we record all the
intermediate images and corresponding camera poses during ACR
and rACR processes for scenes S7–9, S12–13 and S16. We compute
the AFD score for each intermediate image during the relocaliza-
tion process. For each iteration, specifically, we also compare the
average difference between current camera pose and the reference

one in the world coordinate system, i.e., k~Ti
A � Tref

A k. For fair com-
parison, we place the camera to a little farther position away from
the reference one for rACR than ACR. As shown in Fig. 8, the pro-
posed rACR can quickly converge to a very low AFD state after only
4–6 iterations, while ACR has much slower convergence rate. This
is because ACR cannot estimate real translation scale [1]. It uses a
slow bisection approaching strategy to guarantee convergence.
Besides, ACR just guesses hand-eye relative pose as identity matrix,
which also influences the relocalization speed. Moreover, since the
ACR method relies on bisection approaching strategy, both

k~Ti
A � Tref

A k and AFD may increase sometimes. In contrast,

k~Ti
A � Tref

A k and AFD are always decreased for the proposed rACR.
Fig. 8. Convergence compa

Table 4
Average AFD scores of the proposed rACR and ACR method under challenging situations.

weak textures

W1 W2 W3 R1

ACR [1] 12.35 8.845 fail 4.263

rACR (ours) 1.375 1.183 1.579 1.372

Fig. 9. rACR vs ACR for scen
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5.3. Challenging situation study

We provide more comparison results of the proposed rACR and
the state-of-the-art ACR to show the effectiveness of our method,
especially for challenging situations when ACR is easy to fail. To
this end, we additional build 9 different scenes that belong to 3 dif-
ferent types. The first type of scenes (W1-3) are weakly-textured,
i.e., have fewer feature points. The second type of scenes (R1–3)
have many repetitive patterns. For the third type of scenes (V1–
3), we conduct rACR and ACR under highly varied illuminations
between reference and current observations. For the 6 scenes of
the first two types, we execute rACR and ACR under similar lighting
conditions between twice observations. We conduct 5 independent
camera relocalization for each method to avoid statistical bias.
Table 4 shows the average AFD scores of the two methods under
each scene. The corresponding visual relocalization results are
shown in Figs. 9–11. we manually count the number of correct
matching points. ‘‘A/B” means that there are ‘‘B” matching points
rison of rACR and ACR.

repetitive patterns varied illuminations

R2 R3 V1 V2 V3

4.186 7.069 16.17 19.24 11.74

1.544 1.466 1.789 1.528 1.719

es with weak textures.



Fig. 10. rACR vs ACR for scenes with repetitive patterns.

Fig. 11. rACR vs ACR for scenes under highly varied illuminations.
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and ‘‘A” of them are correct. As shown in Fig. 9, we can find that the
number of matching points is very few under weakly-textured
scenes. In fact, even if most of the matchings are corrected, fewer
feature matching constraints may lead to the pose estimation error
of ACR, then causing inaccurate camera relocalization result. The
ACR method uses 5-point algorithm [46] to estimate relative pose.
Thus, ACR completely fails for the third scene since the matching
point number is less than 5. Besides, as shown in Fig. 10 and
Fig. 11, we can find that a lot of matching points are wrong and
these erroneous matchings inevitable cause ACR failure. On the
contrary, our rACR scheme uses 3D point clouds, rather than fea-
ture matching to bridge the current and reference observations.
Therefore, the proposed rACR can outperform ACR by a large mar-
gin and achieve accurate camera relocalization result for all the
three challenging situations.

5.4. Ablation study

To quantitatively measure the influence of geometric and pho-
tometric terms in Eq. (11), we conduct rACR under the 10 indoor
scenes for different parameter a taken from range ½0;1�. For each
21
value of a, we conduct 5 times for 3 scenes (S1–3). The correspond-
ing AFD scores are shown in Fig. 12(a). We can see that rACR
achieves the best performance when a ¼ 0:2. Hence, we set a to
0.2 in our experiments.

Besides, we compare various versions of rACR to verify the
effectiveness of the scale-aware point cloud alignment. Specifi-
cally, we use ‘‘rACR” to denote the proposed rACR method.
‘‘rACR-P”, ‘‘rACR-F” and ‘‘rACR-S” indicates the rACR without
optimizing current keyframe poses (Eq. (16)), without fine-
grained alignment (Eqs. (16)–(18)) and only optimizing the rela-
tive pose TP but not the relative scale factor rP in Eq. (9),
respectively. We independently test each version 5 times for 3
scenes (S1–3). The ‘‘average + std” AFD scores are shown in
Fig. 12(b). Comparing rACR-F with rACR-S, we can find that
scale-aware point cloud alignment plays a very important role
for better relocalization accuracy, since the scale difference
between reference and current point clouds may severely affect
the accuracy of current camera pose estimation in the world
coordinate system. Furthermore, with the help of optimizing cur-
rent keyframe poses, the proposed rACR achieves better camera
relocalization accuracy than rACR-P.



Fig. 12. (a) The influence of a to rACR accuracy. (b) AFD average + std of each version of rACR for 3 scenes.

Fig. 13. Comparison of different versions of rACR in 3 scenes. In each case, the first column shows the reference image. The visual point cloud alignment results of different
versions of rACR are listed on the right.

Table 5
Speed comparison of serial rACR (alternately conducting point cloud alignment and motion execution in one thread) and parallel rACR.

mean std

serial rACR 84.6s 9.25s
parallel rACR 59.5s 5.70s
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Note, it is reasonable that the performances of rACR-F and
rACR-P are close in Fig. 12(b). Specifically, our point cloud align-
ment function (Eq. (11)) has two terms, the geometric term Eg

and the photometric term Ep. The fast alignment stage only opti-
mizes Eg and the fine-grained alignment stage optimizes both Eg

and Ep. Since there exit inevitable estimation errors of current key-
Fig. 14. Visual comparison of our rACR and baselines for parts of the scenes. Bottom-rig
6 3:0.
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frame poses (estimated by SLAM), these errors would influence the
estimation accuracy of RP ; tP and rP if we only optimize Eqs. 17,18
in the fine-grained alignment stage. Therefore, if we do not simul-
taneously optimize the current keyframe poses (i.e., Eq. (16)), con-
ducting fine-grained alignment may not bring a remarkable
accuracy improvement. This is why rACR-F and rACR-P have close
ht subfigure is the FDF map. We consider camera relocalization is successful if AFD
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performance. Furthermore, when we optimize both Eqs. (16)–(18),
rACR can achieve a noticeable performance improvement, see the
results of the last row in Fig. 13(b). Besides, Fig. 13 shows the visual
point cloud alignment results for one case. We can see that the pro-
posed rACR achieves the best 3D alignment effect (e.g., see the
zoom-in parts in Fig. 13).

To validate the efficiency of the proposed parallel rACR scheme,
we also implement a serial rACR version, that alternately conducts
point cloud alignment and motion execution within a single
thread. We compare the serial rACR and parallel rACR on 3 differ-
ent scenes (S1-3), for each of which we independently run two ver-
sions of rACR 10 times. For fairness, in each test, we place the
Fig. 15. Applications: FGCD of high-value outdoor scenes. Scene1: Yearly FGCD of an anc
speed train; Scene3: Quarterly FGCD of stone inscription in The Summer Palace.
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camera to the same initial pose (via the robotic platform). As
shown in Table 5, we can clearly see that parallel rACR is almost
1:5 times faster.

5.5. Real-world applications for FGCD

An important real-world application of the propose rACR is fine-
grained change detection (FGCD) [3] in the wild. Different from the
traditional change detection (CD) problem [47], which mainly
focuses on finding large-scale changes, FGCD [3] aims to discover
and locate minute changes by comparing reference and current
observations within proper time interval for the same scene. In
ient stupa of Yuan Dynasty (1271–1368); Scene2: Running status inspection of high



Q. Zhang, W. Feng, Yi-Bo Shi et al. Neurocomputing 495 (2022) 11–25
fact, FGCD plays a fundamental and important role in high-value
object monitoring tasks. For instance, preventive conservation of
cultural heritage needs long-term tiny change monitoring and
measurement to analyze the causes of cultural relics deterioration
[48,49]. Other examples include biomedical diagnosis and all
important buildings (e.g., dam) monitoring, which all require reli-
able detection of fine-grained changes. FGCD usually has two
stages, data capturing stage and change detection stage. The for-
mer aims to capture twice observation images with similar camera
pose, which is just the objective of active camera relocalization
(ACR). The later aims to accurately detect the scene changes from
twice captured images. Obviously, accurate camera relocalization
can effectively reduce the difficulty of detecting scene tiny
changes.

Unfortunately, the state-of-the-art ACR method [1] cannot do
well under highly varied lightings, especially for the outdoor envi-
ronment, since the lighting conditions cannot be controlled. There-
fore, reliable high-quality outdoor FGCD forms the practical
motivation of this work. As shown in Fig. 15, we compare the FGCD
performances of the proposed rACR and ACR baseline [1] under
three real scenes, including an ancient stupa of Yuan Dynasty
(1271–1368), a high speed train and a stone inscription in the
Summer Palace. Fo each scene, we first capture the reference
image, then conduct ACR or rACR to capture the current images
after about one year later. Next, we employ a state-of-the-art
fine-grained change detection method [3] to detect the minute
changes from the reference and current images. We carefully anno-
tate the ground truth changes of the three cases and use widely-
used F1-Score (the larger the better) to evaluate the FGCD accu-
racy. The quantitative and visual comparison results are shown
in Fig. 15. The FDF maps and AFD scores are shown in the
bottom-right of ACR/rACR images. The white regions in the change
map indicate the scene real changes, which are also circled in the
zoom-in images. Besides, the areas of scene changes are marked
in the change maps. We can see that the ACR baseline [1] fails
(AFD> 3) for the first two cases where lightings have changed a
lot, further leading to inaccurate change detection results. On the
contrary, our rACR works well under varied lightings, so the min-
ute changes occurred in scenes can be faithfully detected. Due to
the inaccurate camera relocalization, the results of ACR + FGCD
obviously have more false alarm than our ours.
6. Conclusion

In this paper, we have addressed illumination robustness and
convergence speed, two critical issues of active camera relocaliza-
tion (ACR), by proposing rACR, a new fast and robust ACR scheme,
using the correspondence of current and reference point clouds to
align the two camera coordinate systems. Specifically, rACR is a
two-stage procedure. Fast alignment is the first stage, where an
efficient algebraic estimation of current 3D point cloud scale is pro-
posed to physically equalize current and reference observations,
and effectively generate camera adjustment motions. After the
camera pose is almost aligned by fast alignment, the second stage
fine-grained alignment launches by jointly optimizing the relative
scale factor and pose displacement in a finer level, via scale-aware
3D point cloud alignment. Since rACR circumvents 2D feature
matching and avoids slow bisection approaching, it achieves 5�
faster convergence speed and better relocalization accuracy over
state-of-the-art ACR competitors. Besides, the fast marching stage
can also estimate the unknown hand-eye relative pose, which, as
a byproduct, may further benefit the ACR accuracy and speed.

Compared to previous 2D matching based ACR strategy, the
proposed rACR adopts a 3D way to achieve robustness to lighting
variations. As verified by our experiment, due to the reliability of
24
current visual SLAM methods, the relative complexity of acquiring
current and reference observations using point clouds and 2D
images is almost comparable. In most cases, for two arbitrarily dif-
ferent stable lighting conditions, rACR is able to relocalize the cam-
era to the target pose. It may only fail for purely homogeneous 3D
scene shapes, e.g., a ball or a plane surface. In this case, 3D point
cloud has no discriminative power to establish effective matching
from current and reference observations. For this situation, 3D and
2D fused strategy may be a better choice to generate some equal-
ized virtual lighting for better ACR performance, which is our
future work.
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