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Abstract

Semantic scene completion is a difficult task that involves completing the geometry
and semantics of a scene from point clouds in a large-scale environment. Many
current methods use 3D/2D convolutions or attention mechanisms, but these have
limitations in directly constructing geometry and accurately propagating features
from related voxels, the completion likely fails while propagating features in a
single pass without considering multiple potential pathways. And they are generally
only suitable for static scenes and struggle to handle dynamic aspects. This paper
introduces Voxel Proposal Network (VPNet) that completes scenes from 3D and
Bird’s-Eye-View (BEV) perspectives. It includes Confident Voxel Proposal based
on voxel-wise coordinates to propose confident voxels with high reliability for
completion. This method reconstructs the scene geometry and implicitly models
the uncertainty of voxel-wise semantic labels by presenting multiple possibilities
for voxels. VPNet employs Multi-Frame Knowledge Distillation based on the
point clouds of multiple adjacent frames to accurately predict the voxel-wise labels
by condensing various possibilities of voxel relationships. VPNet has shown
superior performance and achieved state-of-the-art results on the SemanticKITTI
and SemanticPOSS datasets.

1 Introduction

Understanding 3D scenes based on LiDAR point clouds is essential for tasks like autonomous driving.
However, due to the limitations of LiDAR sensors and the occlusion of instances by themselves
or other instances in the real world, including large-scale information in the point clouds poses a
significant challenge to understanding 3D scenes.

Semantic Scene Completion (SSC) aims to simultaneously infer a scene’s occupancy and semantic
information based on point clouds using deep learning. Several methods [1; 2; 3; 4; 5; 6; 7; 8; 9;
10; 11; 12; 13; 14; 15; 16; 17; 18] use convolutions to complete the partial scene. Some completion
methods [19; 20; 21; 22] heavily rely on diverse attention mechanisms as the attention mechanism
can capture spatial relationships and update the features. The diffusion model [23] also applies to the
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completion task. These methods have significantly improved the performance of static single-frame-
based semantic scene completion. However, they still suffer from extreme geometric incompletion
due to the large-scale information loss of point clouds. Moreover, these methods ignore the regional
distraction and voxel semantic uncertainty that arises from the information loss and the complex
relative motion of instances in dynamic point cloud sequences.

Our paper introduces a new method for completing from both Bird’s Eye View (BEV) and 3D
perspectives. We propose confident voxels that show possibilities for voxels and implicitly capture
the uncertainty of voxel-wise labels. Our method, Voxel Proposal Network (VPNet), includes the
Confident Voxel Proposal (CVP) and Multi-Frame Knowledge Distillation (MFKD). We present the
overview architecture of VPNet in Figure 1. The BEV branch completes from the BEV perspective
using 2D convolutions to ensure global reasonableness and comprehensiveness of completion. The
3D branch consists of segmentation and completion subnetworks, which perform completion under
the guidance of rich semantic contexts and optimize local details and accuracy of completion.

In the 3D branch, CVP learns multiple arrays of offsets for occupied voxel coordinates and features to
compute confident voxel coordinates and perform long-range feature propagation like [24] within its
branches. Then, CVP uses the confident voxel coordinates to propose confident voxels and constructs
confident feature maps, which suggest various possibilities of voxel semantic labels. Finally, we
integrate the confident feature maps as augmented feature maps for completion using multi-branch
fusion, which condenses the proposed possibilities from the inner-frame branches.

VPNet has a multi-frame network that generates enhanced feature maps for multiple frames using
CVPs. It condenses these feature maps into the branches of the CVP in the single-frame network,
enabling each branch to create a similar semantic to the corresponding point cloud frame. VPNet
condenses the combined enhanced feature map of multiple frames into the single-frame network,
further improving the semantics. This process condenses the various possibilities in multi-frame to
single-frame networks and affords the opportunity to learn to infer the lost details of each frame in
contrast to other KD methods [25; 26; 27; 16].

We evaluate the effectiveness of VPNet on the SemanticKITTI [28] and SemanticPOSS [29] datasets,
where we achieve state-of-the-art performances on the semantic scene completion task.

2 Related Work

2.1 Semantic Scene Completion

The current approaches for SSC rely on convolution, attention, or diffusion models. For example,
SSCNet [1] utilizes dilated convolution to enhance the feature map, while LMSCNet [2] applies 2D
U-Net and 3D segmentation heads for multi-resolution completion. ESSCNet [3] employs spatial
group convolution and sparse convolution to group voxels, and UDNet [4] incorporates UD block in
3D U-Net to efficiently fuse encoder and decoder features. Furthermore, SSA-SC [5] uses a semantic
segmentation network to assist completion from BEV, JS3CNet [6] employs dense 3D and graph
convolution to link point cloud and voxel features, and Symphonies [19] adopts deformable cross-
attention to generate voxel features from the multi-scale depth and RGB images. Lastly, VPDD [23]
utilizes the diffusion model to remove noise and complete the scene.

These methods have geometry construction and feature propagation limitations as they assume a
static perspective and disregard the semantic uncertainty in dynamic sequences. To address this, we
propose a method that leverages confident voxels to model the semantic uncertainty and employs
multi-frame distillation to enhance the uncertainty modeling.

2.2 Knowledge Distillation

Knowledge distillation transfers knowledge from the teacher to the student network. Smaller3D [25]
distills at different levels. PointDistiller [30] proposes local distillation. PVD [26] adopts super voxel
partition to utilize geometric information better. S2M2-SSD [31] distills multi-modal knowledge to
network with point cloud as input. CMKD [32] distills from the network with the point cloud as input
to the network with the monocular image as input. 2DPASS [33] proposes multi- to single-modal
distillation that fuses point cloud and image features and distills fused features to the student network.
SMF-SSD [34] distills multi-frame knowledge to a single-frame network at three levels. M2SKD [35]
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Figure 1: The architecture of VPNet. It consists of BEV and 3D completion branches. CVP in
the 3D branch proposes confident voxels to present possibilities for voxels and model the semantic
uncertainty of voxels implicitly. Moreover, we construct a multi-frame network and employ MFKD
to enhance the accuracy of uncertainty modeling. We represent free voxels as transparent.

performs distillation for difficult categories from multi- to single-frame. 3D-to-BEV [27] achieves
distillation from 3D to BEV view. SDSeg3D [36] distills from data-augmented teacher to student
without augmentation to improve robustness. In contrast, we adopt multi-to-single frame distillation
to extract accurate semantic information.

2.3 Point Cloud Sequence Learning

The information within adjacent point cloud frames is complementary. This understanding forms
the basis of our research. M2SKD [35] and SMF-SSD [34] fuse aligned multi-frame point cloud for
distillation, specially M2SKD [35] only fuses complex samples. TemporalLatticeNet [37] adopts
LSTM and GRU to capture temporal relationships better. MarS3D [38] builds Motion-Aware Feature
Learning to extract motion instance features. TemporalLidarSeg [39] and MemorySeg [40] employ
a Memory mechanism to fuse the features with other frames. Meta-RangeSeg [41] uses Meta-
Kernel [42] to aggregate spatial-temporal features. SpSequenceNet [43] proposes Cross-frame Global
Attention and Local Interpolation to fuse features. P4Transformer [44] designs Point 4D Convolution
to capture the spatial-temporal relationship. PST-Transformer [45] extract spatial-temporal features
in a decoupled-joint manner. Moreover, SVQNet [46] splits historical points into voxel-adjacent
neighborhoods and historical contexts to complete local and global information. While commendable,
existing methods often struggle to fuse point cloud information efficiently. They cannot assign
different weights to point clouds, highlighting the need for a more comprehensive solution. We
construct a multi-frame network by fusing the feature maps with weighted fusion to guide the
single-frame network by distillation.

3 Method Overview
We present VPNet and pipeline of CVP and MFKD in Figure 1 and 2. In single-frame network,
given point cloud Pi ∈ RNi×4, we process it with shared MLP and get 3D voxel feature map
Vi ∈ RL×W×H×C and BEV feature map Bi ∈ RL×W×C (see Figure 1(b)), Ni is the number of
points, C is the channel number of Vi and Bi. We pass Bi through BEV completion branch and get
completed BEV feature map Fbev

i ∈ RL×W×H×C′
, C ′ is the channel number of Fbev

i . Then, we pass
Vi through segmentation and completion subnetwork in the 3D completion branch. Given semantic
embedded feature map Si ∈ RL×W×H×C′

produced by segmentation subnetwork, Confident Voxel
Proposal (CVP) learns Q groups of offsets {Dq

i ∈ RJi×3 | q = 0, 1, . . . , Q− 1} for occupied voxel
coordinates Mi ∈ RJi×3 and features Ui ∈ RJi×C′

in Si to compute confident voxel coordinates
and features, it builds confident feature maps {Eq

i | q = 0, 1, . . . , Q− 1} with confident voxels and
Si with Q branches in CVP. And CVP produces an augmented feature map Ai ∈ RL×W×H×C′

by
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Figure 2: The pipeline of CVP and MFKD. The semantics feature maps are produced with a
segmentation subnetwork in the 3D branch.

fusion of {Eq
i | q = 0, 1, . . . , Q− 1}, Ji is the number of occupied voxels. After that, we pass Ai

through other parts of completion subnetwork as completed 3D feature map F3d
i ∈ RL×W×H×C′

(see
Figure 1(b)). Finally we fuse Fbev

i and F3d
i with BEV-3D Fusion to maintain final completion result

Ri ∈ RL×W×H×C′′
where C ′′ indicates the number of semantic categories.

In multi-frame network, given point clouds {Pi, . . . ,Pk}, We pass them through segmentation
subnetwork and separate CVP of 3D branch and obtain augmented feature maps {A′

i, . . . ,A
′
k}

(see Figure 2(a)). Then we fuse them and get multi-frame fused augmented feature map A′ ∈
RL×W×H×C′

. We regard A′ as augmented feature map Ai in a single-frame network, and the other
modules of the multi-frame network are consistent with a single-frame network (see Figure 1(a)).

We set the branch number in the CVP of the single-frame network to be the same as the frame number
in the multi-frame network. Moreover, we divide Multi-Frame Knowledge Distillation (MFKD)
into two stages in Figure 2, we caculate the difference between {Ai, . . . ,Ak} and {E0

i , . . . ,E
Q−1
i }

correspondingly in stage-1 distillation to drive the branches in CVP of the single-frame network to
learn the semantic feature distribution of corresponding frame and condense the various possibilities
contained in the corresponding frame. We compute the difference between A′ and Ai in stage-2
distillation to drive CVP in the single-frame network to learn multi-frame fused semantics further.

4 Architecture of VPNet

This section details the dual-branch VPNet with the confident voxel proposal (CVP) and the multi-
frame knowledge distillation (MFKD).

4.1 Dual-branch Completion Network

As Figure 1(b) illustrates, VPNet has a 3D completion branch and a BEV completion branch, and we
utilize multiple feature fusion schemes to combine them to achieve improved completion results.

Feature Initialization Given a point cloud Pi = {(xp, yp, zp, rp) | p = 0, 1, . . . , Ni − 1}. xp, yp,
zp are the coordinates. rp is the reflectivity of point p, we update Pi as P′

i during voxelization. This
update is represented as P′

i = {(xp, yp, zp, δxp, δyp, δzp, rp) | p = 0, 1, . . . , Ni − 1}, where δxp,
δyp, δzp are the differences in each dimension between the coordinates and the voxel center that
point p belongs to. Then, we initialize Vi and Bi as follows:

{Vi,Bi} = {M,M̃}(F(P′
i)), (1)

where F is a shared MLP that extracts the point-wise features, M and M̃ indicate selecting the
maximum from points that are in the same voxel or column.

Dual-branch Completion The 3D completion branch comprises a segmentation subnetwork and
a completion subnetwork. The segmentation subnetwork, adapted from Cylinder3D [47], captures
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semantic embedded feature map Si from Vi. These feature maps are fed into the completion
subnetwork, which synthesizes the completed 3D feature map F3d

i . The completion subnetwork
includes the proposed CVP module and several 3D dense convolution kernels of varying sizes.

In parallel, the BEV completion branch utilizes a 2D U-Net architecture. It reconstructs the scene
from BEV. The BEV feature map Bi is processed through this branch to produce the completed
BEV feature map Fbev

i . With sum operation, we compress features extracted by the 3D segmentation
subnetwork’s encoder blocks along the height axis. We integrate the compressed feature maps to
corresponding levels of BEV encoder blocks. This establishes an early fusion of 3D and BEV features
that enhances the global perception capabilities of the 3D branch and the spatial analysis capabilities
of the BEV branch. We utilize BEV-3D Fusion to generate the final completion result Ri as:

Ri = C(R(I(Fbev
i )),F3d

i ), (2)

where I is a convolution layer that increases the feature channels of Fbev
i , R is a reshape operation

that expands the height dimension from channels and C is concatenation along the channel dimension.
This establishes the later fusion of 3D and BEV completion branches.

4.2 Confident Voxel Proposal

We propose confident voxels by offset learning and feature propagating from occupied voxels. We
take qth branch as an example to describe the details of CVP.

Offset Learning As illustrated in Figure 3, the segmentation subnetwork extracts a sparse
semantics embedded feature map Si, from which we initialize the occupied voxel coordinates
Mi = {(xj , yj , zj) | j = 0, 1, . . . , Ji − 1} and occupied voxel features as Ui ∈ RJi×C′

. In
Figure 3(a), we initialize random noise Zq

i ∈ RJi×Cz , Cz is the channel number of noise Zq
i and

Zq
i ∼ N (0, 1). We computes a groups of offsets Dq

i ∈ RJi×3 for each coordinate in Mi as:

Dq
i = F̃i(C(Mi,Ui,Z

q
i )). (3)

F̃i is the shared MLP in CVP. Mi allows the model to consider the geometric information of the
partial scene, Ui introduces rich semantic context. The random noise Zq

i drives the voxel coordinates
Mi away from the initial position and ensures the robustness of offset learning. By sampling
random noise across multiple branches of the CVP module, we generate various offset sets, enabling
the inference of multiple semantic possibilities for the voxels. During offset learning, we employ
occupied voxel coordinates Mg of completion ground truth as supervision.

Voxel Proposal As shown in Figure 3(b), we propose coordinates that contain decimals by adding
offsets Dq

i to initial coordinates Mi and compute confident voxel coordinates Gq
i with rounding

operation on proposed coordinates. We formulate the feature propagation process as:

Yq
i = I(W(Ui,D

q
i )), (4)

where W is the operation of updating feature Ui according to the offsets Dq
i that makes the features

that propagate farther be pruned more. It ensures the reliability of feature propagation, I is feature
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interpolation that computes the feature of the voxel center from proposed points in the same voxel,
and Yq

i is the confident voxel features after propagation. We construct confident feature map Eq
i as:

Eq
i = DDCM(D(Gq

i ,Y
q
i ) + Si), (5)

where D is confident voxels with coordinates Gq
i and confident voxel features Yq

i . DDCM is a
modified Dimension-Decomposition based Context Modeling [47] module that refines the features
after propagation and reconstructs the semantic context.

addition  local avgpooling multiplication
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As Figure 4 indicates, we adopt the
weighted fusion strategy [48] and
modify it to fuse the branches in
CVP and compress the possibilities
in branches. We compute the weights
Wq

i ∈ R1×C′
as:

Wq
i = J q

i (Ã(

Q−1∑
q=0

Eq
i )). (6)

Ã is local average pooling that com-
presses the local representation for
each branch. We flatten the pooled
feature then, and J q

i is the fully connected layer for qth branch. We fuse the branches in CVP
according to the weights and get an augmented feature map Ai.

4.3 Multi-Frame Knowledge Distillation

We construct a multi-frame network that proposes confident voxels and generates an augmented
feature map for each frame with CVPs. We utilize MFKD to distill the semantic knowledge of
augmented feature maps into a single-frame model in two stages to condense the voxel possibilities.

Multi-Frame Network As illustrated in Figure 1(a), we align the point cloud frames {Pi, . . . ,Pk}
to the coordinate of the current frame Pi. We input the aligned point clouds into the 3D completion
branch separately. We get multi-frame augmented feature maps {Ai, . . . ,Ak}. We fuse them as A′

with the above-mentioned weighted fusion strategy. We regard A′ as A in the single-frame network
to build the multi-frame network. We input {Vi, . . . ,Vk} into 3D completion branch and only input
Bi into BEV completion branch. We construct a multi-frame network that leverages multi-frame
point clouds to model voxel semantic uncertainty with multiple CVPs from a 3D perspective.
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Figure 5: The overall architecture of MFKD. MFKD con-
structs two stages of distillation between CVPs of multi-
frame networks and CVPs of the single-frame network.

Multi-frame Distillation We
obtain augmented feature maps
{Ai, . . . ,Ak} in multi-frame net-
work and confident feature maps
{E0

i , . . . ,E
Q−1
i } in single-frame

network, we calculate the difference
Ls1 between the corresponding
feature maps with

Ls1 =

Q−1∑
0

E(Â(Eq
i ), Â(Ai+q))

(7)
where Â is a local average pooling
function with kernel size s × s × s
to construct super voxels to meet the
sparsity of features, and E is the Kull-
back–Leibler divergence function. We build stage-1 distillation to drive the branches in CVP to
simulate the knowledge learned by multi-frame CVPs and condense possibilities of the corresponding
frame to branch in CVP.

Training Losses To improve the accuracy of semantic uncertainty modeling and reconstruct the
scene details, given fused augmented feature map A′ in the multi-frame network and augmented
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feature map Ai in the single-frame network, we calculate the difference Ls2 between them as:

Ls2 = E(Ai,A
′). (8)

We avoid utilizing a super voxel partition here to prevent the blurring of features. Thus, we build stage-
2 distillation to drive CVP in the single-frame network to simulate the knowledge after multi-frame
CVPs. Finally, we achieve multi-frame distillation by joint stage-1 and -2 distillation as:

Lkd = Ls1 + Ls2. (9)

We formulate total loss in the single-frame and multi-frame networks as:

L = αLcom + βLseg + γLgeo + δLkd, (10)

where k = i. Lcom is completion loss. Lseg is segmentation loss. Lgeo is geometry loss between
proposed coordinates and coordinates ground truth. Here, we utilize Chamfer Distance [49]. α, β, γ
and δ are weights of losses. We set α = 1.00, β = 0.10, γ = 0.01 and δ = 0.50 during distillation.

5 Experiments

5.1 Implementation Details

We implement VPNet with PyTorch3 and train it on A6000 GPUs with a mini-batch of 8 for 80
epochs; we use Adam [50] optimizer with an initial learning rate of 0.001. We set feature map
channel number C ′ = 32, random noise channel number Cz = 4, CVP branch number Q = 3, and
super voxel partition kernel size s = 4.

5.2 Datasets and Metrics

We evaluate VPNet on SemanticKITTI [28] and SemanticPOSS [29] datasets, composed of real
outdoor point cloud sequences. SemanticKITTI contains 22 sequences with 19 categories, 11/1/10
sequences for training/validation/online testing. SemanticPOSS contains six sequences divided into
11 categories; it contains 5/1 sequences for training/validation (testing).

According to SSCNet [1], we evaluate VPNet on Scene Completion (SC) with intersection-over-union
(IoU), on Semantic Scene Completion (SSC) with IoU of each semantic category and mean of all
semantic categories’ IoU (mIoU).

5.3 Ablation Study of VPNet

In the ablation study, we conduct experiments on SemanticKITTI [28] validation set.

Analysis of Network Framework We evaluate the impact of the BEV completion branch, segmen-
tation subnetwork, completion subnetwork without CVP, and completion subnetwork with CVP. As
Table 1 illustrated, in the first and second rows, we use the BEV branch and 3D branch without CVP
separately and get (56.4% IoU, 22.2% mIoU) and (50.3% IoU, 23.6% mIoU).

Table 1: Impact of dual-branch network components.
"seg." means 3D segmentation subnetwork and "com."
means 3D completion subnetwork.

BEV seg. com.
w/o CVP

com.
w/ CVP IoU mIoU

56.4 22.2
50.3 23.6
58.3 24.5
59.1 24.9
59.3 25.6

In the third row, we use the BEV branch
and segmentation subnetwork. Under the
augmentation of 3D semantics, we get
(58.3% IoU and 24.5% mIoU) which are
much higher than the performances of the
BEV branch and 3D branch separately.
In the fourth row, we add a completion
subnetwork without CVP to the network;
this method produces (59.1% IoU, 24.9%
mIoU) that improves the IoU with 0.8%.
This proves the effectiveness of joint com-
pletion from different perspectives. The 3D
branch riches the details (in the semantic

3https://pytorch.org/
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aspect), while the BEV branch completes the scene coarsely and with higher completeness (from the
geometric aspect).

We integrate CVP into the dual-branch network and achieve (59.3% IoU, 25.6% mIoU), a significant
improvement of 0.7% mIoU compared to the network without CVP. This incremental improvement
underscores the value of modeling the uncertainty of voxel semantics under the guidance of geometry
for completion, marking a step forward in our understanding and application of these techniques.

Internal Study of CVP We analyze the components of CVP in Table 2. In Table 2(a), we assemble
CVP with random noise Zq

i with different channel numbers. We get the best performance with
Cz = 4. When less than 4, the learning of offsets is insufficient, and the semantic possibility learned
from the voxel proposal is lacking. When more significant than 4, the random noise introduces too
much meaningless information that adversely impacts the network’s performance.

We propose confident voxels with multiple branches, so we analyze the impact of branch number Q
in Table 2(b). The network performance improves when the branch number is increased, and we get
the best completion performance when we set the branch number to Q = 3. However, when we set
Q = 4, we get similar performance (59.2% IoU, 25.6% mIoU) with Q = 3 as too many branches
bring distractions to the network so we set Q = 3 during training.

The fusion strategy of multiple branches influences the performance of voxel semantic uncertainty
modeling; we construct CVP with different fusion strategies and show the results in Table 2(c). Here,
we set branch number Q to 3. We compare the weighted fusion scheme with addition, concatenation,
and average. These standard methods of feature fusion are weak in uncertainty modeling. Among the
compared strategies, addition gets the best performance (59.3% IoU, 25.4% mIoU), but the weighted
fusion we utilize still outperforms it with 0.2% mIoU. This demonstrates that weighted fusion models
the voxel semantic uncertainty more accurately.

Table 2: Internal studies on random noise (a), branch number (b) and fusion strategy (c) of CVP.
(a) Channel number of noise.

noise Cz IoU mIoU
0 59.0 25.0
2 59.1 25.4
4 59.3 25.6
6 58.8 25.3
8 58.5 24.9

(b) Branch number in CVP.

branch Q IoU mIoU
0 59.1 24.9
1 59.0 25.1
2 59.2 25.4
3 59.3 25.6
4 59.2 25.6

(c) Fusion of branches in CVP.

fusion strategy IoU mIoU
addition 59.3 25.4

concatenation 59.2 25.2
average 59.0 25.3

weighted fusion 59.3 25.6

Table 3: Frames in multi-frame network.

frames IoU mIoU
t / t / t 59.5 25.6

t / t+1 /t+2 60.2 26.3
t / t+2 / t+4 61.1 26.8
t / t+3 / t+6 61.4 26.6

Internal Study of MFKD As we build CVP
with Q = 3, we implement a multi-frame net-
work with three frames to build the distillation
relationships between frame and branch in CVP
correspondingly, and we present the results in Ta-
ble 3. We get the best performance (61.1% IoU,
26.8% mIoU) with frames t/t+2/t+4, where t is the
frame we use to train the single-frame. We get
(60.2% IoU, 26.3% mIoU) with frames t/t+1/t+2
as the adjacent frames contain insufficient supplementary information, and frames with larger intervals
like t/t+3/t+6 have less guidance for modeling the uncertainty of semantics.

Table 4: Internal studies on stages of MFKD (a) and comparison with other distillation methods (b).
(a) Stages of MFKD. "voxel" means common voxel partition, "super-"
means super voxel partition.

stage-1 (voxel) stage-1 (super-) stage-2 IoU mIoU
59.3 25.6
59.5 25.5
59.3 25.9
59.6 25.8
59.6 26.1

(b) Comparsion with other distillation
methods.

IoU mIoU
KD [51] 58.9 25.3

PVKD [26] 59.1 25.7
DSKD [16] 59.3 25.8

MFKD (Ours) 59.6 26.1
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Figure 6: Completion results of different methods on SemanticKITTI validation set.

We conduct experiments using different distillation stages in Table 4(a). With stage 1 without super
voxel partition, we get similar results (59.5% IoU, 25.5% mIoU) with the single-frame network, as
ordinary distillation distracts the offset learning due to the neglect of sparsity. We add the super
voxel partition to stage-1 distillation, and this method produces (59.3% IoU, 25.9% mIoU). We also
build MFKD with stage-2 distillation only and get (59.6% IoU, 25.8% mIoU) that proves voxel-wise
guidance like stage-2 is helpful to the semantic uncertainty modeling. We get better performance
(59.6% IoU, 26.1% mIoU) with stage-1 with super voxel partition and stage-2 distillations that provide
more accurate guidance. And we compare MFKD with other distillation methods in Table 4(b) where
MFKD performs better than others and this proves the effectiveness of MFKD.

5.4 State-of-the-art Comparison

We compare our method with state-of-the-art methods on SemanticKITTI online testing set in Table 5.
We present the visualization comparison in Figure 6. Our method outperforms other methods and
demonstrates competitive performance. VPNet produces (60.4% IoU, 25.0% mIoU) that with 1.6%
IoU and 1.5% mIoU improvement than SSA-SC [5] when training with single-frame without MFKD.
It achieves (60.7% IoU, 25.6% mIoU) with 0.3% IoU and 0.6% mIoU improvement with MFKD.
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Table 5: Comparison of VPNet with other works on SemanticKITTI online testing set.
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SSCNet [1] 29.8 9.5 27.6 17.0 15.6 6.0 20.9 10.4 1.8 0.0 0.0 0.1 25.8 11.9 18.2 0.0 0.0 0.0 14.4 7.9 3.7
SSCNet-full [1] 50.0 16.1 51.2 30.8 27.1 6.4 34.5 24.3 1.2 0.5 0.8 4.3 35.3 18.2 29.0 0.3 0.3 0.0 19.9 13.1 6.7
TS3D [52] 29.8 9.5 28.0 17.0 15.7 4.9 23.2 10.7 2.4 0.0 0.0 0.2 24.7 12.5 18.3 0.0 0.1 0.0 13.2 7.0 3.5
TS3D/DNet [28] 25.0 10.2 27.5 18.5 18.9 6.6 22.1 8.0 2.2 0.1 0.0 4.0 19.5 12.9 20.2 2.3 0.6 0.0 15.8 7.6 7.0
LMSCNet [2] 55.3 17.0 64.0 33.1 24.9 3.2 38.7 29.5 2.5 0.0 0.0 0.1 40.5 19.0 30.8 0.0 0.0 0.0 20.5 15.7 0.5
LMSCNet-SS [2] 56.7 17.6 64.8 34.7 29.0 4.6 38.1 30.9 1.5 0.0 0.0 0.8 41.3 19.9 32.1 0.0 0.0 0.0 21.3 15.0 0.8
Local-DIFs [53] 57.7 22.7 67.9 42.9 40.1 11.4 40.4 34.8 4.4 3.6 2.4 4.8 42.2 26.5 39.1 2.5 1.1 0.0 29.0 21.3 17.5
JS3C-Net [6] 56.6 23.8 64.7 39.9 34.9 14.1 39.4 33.3 7.2 14.4 8.8 12.7 43.1 19.6 40.5 8.0 5.1 0.4 30.4 18.9 15.9
SSA-SC [5] 58.8 23.5 72.2 43.7 37.4 10.9 43.6 36.5 5.7 13.9 4.6 7.4 43.5 25.6 41.8 4.4 2.6 0.7 30.7 14.5 6.9
Ours (w/o MFKD) 60.4 25.0 72.4 44.3 40.5 14.8 44.0 37.2 4.3 14.0 9.8 8.2 45.3 30.9 42.1 4.9 2.0 2.4 32.7 17.1 8.8
Ours (w/ MFKD) 60.7 25.6 73.1 45.2 40.8 14.8 44.7 37.1 5.0 16.9 10.0 8.4 46.1 31.4 43.8 5.1 2.2 2.5 33.2 17.8 7.7

VPNet outperforms other methods in most of the semantic categories, and this demonstrates its
effectiveness. In the first and fifth rows of Figure 6, VPNet achieves more complete geometry than
other methods. It captures semantics more accurately (see the second and fourth rows). In the third
and fifth rows, VPNet achieves complete and precise completion results for the distance of the scene
thanks to the novel multi-frame distillation approach. We also validate the effectiveness of our method
on the SemanticPOSS validation set and compare it with some representative methods in Table 6, and
our method produces better completion performance (57.3% IoU, 23.3% mIoU) than other methods.

Table 6: Comparison of VPNet with other works on SemanticPOSS validation set.
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SSCNet [1] 41.7 12.1 8.2 0.4 1.3 1.0 3.7 34.4 4.8 3.3 34.3 16.0 25.6
LMSCNet-SS [2] 52.6 16.4 8.4 0.0 1.0 1.8 4.3 3.8 0.8 13.6 39.2 27.4 45.4
SSA-SC [5] 53.3 21.6 17.8 0.5 4.3 2.6 3.1 43.3 11.1 23.4 40.6 42.5 48.2
Ours (w/o MFKD) 56.9 22.4 15.1 0.4 1.7 1.0 4.9 46.4 9.4 28.0 43.2 45.0 51.0
Ours (w/ MFKD) 57.3 23.3 14.6 1.1 2.7 2.6 5.4 47.0 14.2 30.6 43.3 44.0 50.5

6 Conclusion

The recent progress in semantic scene completion has been achieved using the geometry and se-
mantics of point clouds. Our paper introduces a dual-branch nework called VPNet with a confident
voxel proposal that generates confident voxels through offset learning and multi-frame knowledge
distillation that distills the possibilities from multi-frame to single-frame network. Our method has
shown competitive performance on the SemanticKITTI and SemanticPOSS datasets.

7 Broader Impacts

VPNet enhances 3D perception capabilities by directly restoring geometric structures through voxel
coordinate offset learning and conducting precise semantic feature propagation, thereby improving
the ability for semantic scene completion. This work has inconspicuous negative societal impacts.

8 Limitations

The method encounters limitations in fine-grained geometric shape learning due to a single round of
offset learning and feature propagation. An iterative process can solve this limitation.
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