
Generative Status Estimation and Information
Decoupling for Image Rain Removal

Di Lin1,†, Xin Wang2,†, Jia Shen1, Renjie Zhang2, Ruonan Liu1, Miaohui Wang3,
Wuyuan Xie3, Qing Guo4, and Ping Li2,*

1Tianjin University, China
2The Hong Kong Polytechnic University, Hong Kong

3Shenzhen University, China
4Center for Frontier AI Research, A*STAR, Singapore

p.li@polyu.edu.hk

Abstract

Image rain removal requires the accurate separation between the pixels of the rain
streaks and object textures. But the confusing appearances of rains and objects
lead to the misunderstanding of pixels, thus remaining the rain streaks or missing
the object details in the result. In this paper, we propose SEIDNet equipped with
the generative Status Estimation and Information Decoupling for rain removal.
In the status estimation, we embed the pixel-wise statuses into the status space,
where each status indicates a pixel of the rain or object. The status space allows
sampling multiple statuses for a pixel, thus capturing the confusing rain or object.
In the information decoupling, we respect the pixel-wise statuses, decoupling the
appearance information of rain and object from the pixel. Based on the decoupled
information, we construct the kernel space, where multiple kernels are sampled
for the pixel to remove the rain and recover the object appearance. We evaluate
SEIDNet on the public datasets, achieving state-of-the-art performances of image
rain removal. The experimental results also demonstrate the generalization of
SEIDNet, which can be easily extended to achieve state-of-the-art performances on
other image restoration tasks (e.g., snow, haze, and shadow removal). We release
the implementation of SEIDNet via https://github.com/wxxx1025/SEIDNet.

1 Introduction

Image rain removal relies on the understanding of the appearances of the rains and the objects. Most
of the current methods employ the discriminative network to learn the visual features of the pixels,
for representing the visual appearances of the rain streaks and object textures. Based on the visual
features, the network learns the shared [1, 2, 3, 4, 5, 6, 7] or dynamic convolutional kernels [8, 9] for
rain removal on the pixels. Intuitively, the kernels for rain removal respect the pixel-wise statuses
(i.e., rain or object), reducing the rainy intensities and recovering the object details of the pixels.

The challenge of rain removal mainly stems from the fact that some of the rains are similar to the
objects (see the input regions in Figure 1(a)). The confusion between the rains and the objects
is inevitably encoded into the visual features. It yields the inappropriate kernels for the pixels,
contributing to the erroneous results like leaving the rain streaks and removing the object textures
in the image (see the predictions in the pink rectangles of Figure 1(b)). The discriminative network
provides a deterministic kernel for a pixel. But it loses the chance of computing more appropriate

† Di Lin and Xin Wang contributed equally to this work.
* Ping Li is the corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/wxxx1025/SEIDNet

Input Kernel Prediction Ground Truth

(a) Rainy Image (b) Result of Rain Removal
Figure 1: In the left-most column, the input regions of the rainy image (a) have similar rain streaks
and object textures. The top/bottom pair of input regions are processed by the similar kernels. In the
result (b), these kernels yield good predictions in the blue rectangles, but remaining rains and missing
textures in the pink rectangles. Here, we employ EfDeRain [8] to estimate the kernels.

kernels for a misunderstood pixel. The popular methods [2, 3, 4, 10, 11, 12, 13, 14, 15, 16, 17, 18]
use different kernels to process the rains at several stages. Yet, the confusing information at the early
stages still misleads the kernel computation at the later stages.

In this paper, we present a novel approach for capturing the confusing information of the pixels. The
key idea is to use the generative network to learn the probability distribution of the pixel-wise status
and the dynamic convolutional kernel. The distribution captures the correlation between status and
kernel. Given the distribution, we regard the feature of the pixel as the condition, generating multiple
statuses and kernels. The statuses facilitate more focused learning of the dynamic kernels, which
capture the rain and object characteristics. Compared to single status, multiple statuses can be used
for generating more kernels, which provide more opportunities for refining the result of rain removal.

We construct SEIDNet, a generative network equipped with the pixel-wise Status Estimation and
Information Decoupling for rain removal. We illustrate the construction of SEIDNet in Figure 2.
We use the rainy image and the object layer1 as the training sample. In the status estimation (see
Figure 2(a)), we subtract the object layer from the rainy image, achieving the statuses of all pixels in
the rainy image. We construct a conditional variational auto-encoder (CVAE) to embed the pixel-wise
statuses of different pixels into the status space. With the status space, we use the feature of the pixel
as the condition to generate multiple statuses that capture the confusing appearance of the pixel.

In the information decoupling (see Figure 2(b)), we use the statuses to yield the feature maps that
represent the decoupled information of rain and object. We exploit these feature maps to learn the
kernels. We employ another CVAE to embed the learned kernels into the kernel space, where we use
the feature and the status of the pixel as the condition to generate the kernel. The status estimation
can generate multiple statuses, helping to generate multiple kernels. These kernels effectively reduce
the confusing information of the pixel, finally producing a better result of rain removal.

We evaluate SEIDNet on the public datasets for rain removal (i.e., Rain100H [16], Rain100L [16],
Rain1400 [19], Rain13K [10] and SPA [3]), achieving state-of-the-art performances. Furthermore,
we extend SEIDNet to various image restoration tasks (e.g., snow, haze, and shadow removal), where
SEIDNet also surpasses the recent methods on the public datasets [20, 21, 22].

2 Related work

2.1 Discriminative Networks

The recent methods use the deep discriminative network to learn the visual features of rain and object.
Zhang et al. [4] propose a residual-aware classifier to recognize the rain density. Yang et al. [16]
use large convolutional kernels to capture rich visual information for recovering the details of the
dense rain streaks and object textures. Zhang et al. [23], Wang et al. [3], and Li et al. [13] use the

1We refer to the object layer as the image without rain.

2

Object Layer O Status Map R

Rainy Image I Feature Map F

Status Map R’

(a) Status Estimation (b) Information Decoupling

(d) Feature Masking

CVAE V
se CVAE V

id

Kernel
Map K

Kernel
Map K’

(c) CVAE V
se

Status Map R

Feature Map F

Encoder

Condition

Decoder
Status

Map R’

µ
r
+σ

r
µ

r

σ
r

µ
f

σ
f

C

C

µ
k

σ
k

Kernel Map K

Feature Map F

Encoder

Condition

Decoder
Kernel

Map K’
µ

c

σ
c

C

C

(e) CVAE V
id

Object
Layer O’

Feature
Masking

Subtraction ConvolutionConcatenateC ⊙ Element-wise multiplication

⊙Z µ
k
+σ

k⊙Z

Status Map R

Condition

Encoder

Condition

DecoderOutput
Input
Input

Encoder

Condition
Decoder

Status
Map R

Feature
Map F

Rain Feature
Map F

r

Object Feature
Map F

o

Object Mask
1-R

⊙

⊙

 Kernel
Map K

⊙

⊙

conv

conv

Figure 2: The training architecture of SEIDNet. The architecture has the (a) status estimation and (b)
information decoupling. We use (c) the CVAE for learning the status space, (d) the feature masking
for yielding the rain and object feature maps, and (e) the CVAE for learning the kernel space.

multi-scale information to capture the appearances of rains and objects in local and global ranges. Li
et al. [12] use the dilated convolution to capture the multi-scale image information for predicting the
diverse shapes of the rain streaks. Wang et al. [2] propose the convolutional dictionary model, where
a set of rain kernels are used for capturing the appearances of the rain streaks and object textures.

The discriminative networks are also used for learning the correlation between rain and object in terms
of their appearances. Luo et al [24] combine the sparse coding and the greedy pursuit algorithms to
separate the rain and object layers. Li et al. [25] utilize Gaussian Mixture Models (GMMs) to involve
the patch-based priors of rain and object. Deng et al. [26] use a unified network for rain removal and
repair of object textures. Fu et al. [19] propose the detail layer of the rain streaks and object contours,
for reducing the impact of low-frequency object textures on the rain removal.

Based on the pixel-wise features, the discriminative networks compute the shared [1, 2, 3, 4, 5, 6, 7]
or the dynamic convolutional kernels [8, 9] for rain removal on the pixels. Yet, the similar appearances
of the rains and the objects let the discriminative network predict the problematic kernels. In contrast,
we use the generative network that learns the probability distribution of the pixel-wise status. With
the distribution, we sample multiple statuses for capturing the confusing information of the pixel. It
assists the computation of kernels for processing the pixels of the rain streaks and object textures.

2.2 Generative Networks

The generative networks, such as the variational auto-encoders (VAEs) [27, 28, 29, 30] and the
generative adversarial networks (GANs) [31, 32, 33, 34, 35], have been widely used for image
generation. Some of the methods employ the generative networks to recover the object layer of the
rainy image. Li et al. [14] input the rainy image to the conditional GAN that preserves the object
textures. Rui et al. [17] resort to the visual attention mechanism, attending to the important image
regions with rain streaks. Zhang et al. [23] propose the delicate loss function to alleviate the artifacts
generated by GAN in the object layer. Du et al. [36] equip the conditional VAE [37] to the spatial
density estimation of the rain streaks for more accurate rain removal.

The existing methods use a stand-alone generative network for embedding the features of the rains
and objects into the latent space. But the confusing rains and objects may mislead the construction of

3

the latent space. These methods may achieve the latent vector of the rain (or object) from the latent
space, where the vector mistakenly represents the object (or rain). Instead, we utilize a couple of
CVAEs, for learning the probability distribution of the pixel-wise status and dynamic kernel. We use
the first CVAE to sample multiple statuses from the latent space, capturing the confusing information
of the pixel. With the second CVAE, we use multiple statuses to sample the kernels. These kernels
are learned from the decoupled information of the rains and objects. They better reduce the confusing
information and refine the pixel intensities in the result.

3 Method Overview

We introduce the probability distribution of the pixel-wise status and kernel. The distribution is
learned by CVAEs in the status estimation and information decoupling of SEIDNet.

Probability Distribution For the rainy image I ∈ RH×W×3, we compute the visual feature map
F ∈ RH×W×C and the status map R ∈ RH×W . F(x, y) ∈ RC represents the feature vector of the
pixel located at (x, y) in the rainy image. R(x, y) ∈ R is the score for the pixel. A higher (or lower)
score indicates the status of the rain (or object). We compute the kernel map K ∈ RH×W×(S×S×C),
where K(x, y) ∈ RS×S×C is the S × S kernel with C channels for the pixel at (x, y). We construct
the generative network to learn the probability distribution P (R,K | F), which takes condition as the
feature map F for computing the status map R and the kernel map K. We formulate P (R,K | F) as:

P (R,K | F) =
∫
P (R,K | F,Z) P (Z) dZ. (1)

Z ∈ RH×W×C is a set of latent variables generated by the normal distribution P (Z). We factorize
the distribution P (R,K | F,Z) into two distributions, P (K |R,F,Z) and P (R | F,Z), as:

P (R,K | F,Z) = P (K |R,F,Z) P (R | F,Z). (2)

The factorization of probability distribution enables a more focused learning of the dynamic kernel
based on the pixel-wise status. We use two CVAEs in the status estimation and information decoupling
to learn the conditional distributions P (R | F,Z) and P (K |R,F,Z), respectively.

Status Estimation As illustrated in Figure 2(a), we use the rainy image I and the object layer
O ∈ RH×W×3 to train the CVAE Vse. Vse learns the distribution P (R | F,Z), for modeling the
status space. We subtract O from I, to achieve the status map R. Vse embeds the statuses in R into
the status space. As illustrate in Figure 2(c), Vse regards the feature map F as the condition, for
sampling the status map R′ from the status space. We regard R′ as the estimation of R.

Information Decoupling We use the status map R and the feature map F to train the CVAE Vid in
the information decoupling (see Figure 2(b)). Vid learns the distribution P (K |R,F,Z) that models
the kernel space. First, we feed R and F into the feature masking (see Figure 2(d)). We decouple
F into the rain feature map Fr ∈ RH×W×C and the object feature map Fo ∈ RH×W×C . We use
Fr and Fo to compute the kernel map K that removes the rains and recovers the objects. Next, Vid
embeds K into the kernel space. As illustrated in Figure 2(e), Vid regards F and R as the condition,
for sampling the kernel map K′ from the kernel space. K′ estimates K for rain removal.

4 Architecture of SEIDNet

Below, we introduce the training and testing architectures of SEIDNet for rain removal.

4.1 Training Architecture

Status Estimation We illustrate the training architecture of SEIDNet in Figure 2. In the status
estimation (see Figure 2(a)), we achieve the status map R ∈ RH×W as:

R = σ(conv(I−O)). (3)

where R(x, y) ∈ [0, 1]. σ and conv are the sigmoid function and a set of convolutional layers. For
the rainy image I ∈ RH×W×3, we use the convolution to learn the feature map F ∈ RH×W×C . We

4

Feature
Map F

Rainy
Image I

Condition

Decoder
Status
Map R

Condition Decoder
Kernel
Map K

Status
Map R

Condition
Kernel
Map K

Decoder Decoder

. . .

µ
f

σ
f

Kernel
Map K

C C

A

CC

C

C

Object
Layer O’

(a) Generation of Status Maps (b) Generation of Kernel Maps

. . .

⊙+

⊙+

µ
f ⊙+

⊙+

⊙ ConcatenateCAElement-wise multiplication Average Convolution

σ
f

σ
f

µ
f

µ
c
m σ

c
m

µ
c
n σ

c
n

Z
n

Z
m

Z
m

Z
n

m

n

u

m

n

Figure 3: The testing architecture of SEIDNet. It contains the condition and decoder branches of
CVAEs, for generating (a) status maps and (b) kernel maps. For brevity, we only illustrate two pairs
of status and kernel maps, i.e., (Rm,Km) and (Rn,Kn). More maps can be generated for testing.

input R and F to the CVAE Vse (see Figure 2(c)), whose encoder, condition, and decoder branches
are formulated as:

[µr, σr] = encoder([R, F]), [µf , σf] = condition(F), R′ = decoder([F, µr+σr�Z]). (4)

[·] is the feature concatenation along the channel dimension. � is the element-wise multiplication.

The encoder and condition branches take input as [R, F] and F, yielding the mean value maps
µr,µf ∈ RH×W×C and the standard deviation maps σr,σf ∈ RH×W×C . We use the normal
distribution N (0, 1) to generate the latent variable map Z ∈ RH×W×C . We input F, Z and (µr,σr)
to the decoder, yielding the status map R′ ∈ RH×W . We use the sigmoid function to normalize R′.

During the network training, we use L2-norm (denoted as L2) to penalize the difference between the
status map R and the estimated counterpart R′. Besides, we compute Kullback-Leibler Divergence
(denoted as KL) between the Gaussian distributions G(µr,σr) and G(µf ,σf). It allows to use
(µf ,σf) in place of (µr,σr) that are unavailable during testing. We define α = 4 as the weight of
KL divergence. L2-norm and KL divergence compose the status estimation loss Lse as:

Lse = L2(R, R′) + αKL(G(µr,σr) || G(µf ,σf)). (5)

This loss guides Vse to learn the distribution P (R | F,Z) in Eq. (2), which models the status space.

Information Decoupling In the information decoupling (see Figure 2(b)), we pass the status map
R and the feature map F into the feature masking (see Figure 2(d)), achieving the feature maps
Fr,Fo ∈ RH×W×C in Eq. (6). Based on Fr,Fo that respectively represent the appearances of rains
and objects in the image I, we compute the kernel maps Kr,Ko ∈ RH×W×(S×S×C).

Fr = R� F, Kr = conv(Fr), Fo = (1−R)� F, Ko = conv(Fo). (6)

We use the status map R to weight Kr and Ko, yielding the kernel map K ∈ RH×W×(S×S×C) as:

K = R�Kr + (1−R)�Ko. (7)

As illustrated in Figure 2(e), the CVAE Vid in the information decoupling also has the encoder,
condition and decoder branches, which are formulated as:

[µk,σk]=encoder([K,F,R]), [µc,σc]=condition([F,R]), K′=decoder([F,R,µk+σk�Z]),
(8)

We input [K, F, R] and [F,R] into the encoder and condition branches, respectively, producing the
mean value maps µk,µc ∈ RH×W×C and the standard deviation maps σk,σc ∈ RH×W×C . We
feed [F,R,µk + σk � Z] into the decoder, yielding the kernel map K′ ∈ RH×W×(S×S×C).

We resort to the L2-norm and KL divergence to construct the information decoupling loss Lid as:

Lid = L2(K, K′) + αKL(G(µk,σk) || G(µc,σc)). (9)

Vid learns the conditional distribution P (K | R,F,Z) in Eq. (2), which models the kernel space.

5

Deraining and Overall Losses Given the kernel map K′, we perform the convolution on the rainy
image I and estimate the object layer O′. As formulated in the left of Eq. (10), the convolution
(denoted as ~) is pixel-wise. where the pixel I(x, y) is processed by the kernel K′(x, y). We use the
structural similarity (denoted as SSIM) loss and L2-norm to penalize the difference between the
object layer O and the estimated layer O′, yielding the deraining loss Lde in the right of Eq. (10).

O′(x, y) = K′(x, y)~ I(x, y), Lde = L2(O, O
′) + βSSIM(O,O′), (10)

where β = 0.2. With the losses Lse, Lid and Lde, we form the overall loss L as:

L = Lse + Lid + Lde. (11)

4.2 Testing Architecture

Kernel Generation During the network testing, we follow the convention to remove all encoder
branches of the CVAEs Vse and Vid. It results in the testing architecture (see Figure 3). We formulate
the process of using Vse and Vid to generate the status map Rm and the kernel map Km as:

[µf , σf] = condition(F), Rm = decoder([F, µf + σf � Zm]),

[µm
c , σ

m
c] = condition([F, Rm]), Km = decoder([F, Rm, µm

c + σm
c � Zm]).

(12)

As illustrated in Figure 3(a), we use the rainy image I to compute the the visual feature map F. We
pass F into the condition branch of Vse, achieving the mean value map µf and the standard deviation
map σf . We use the normal distribution to generate the latent variable map Zm. As formulated in
Eq. (12), the decoder of Vse uses F, Zm and (µf ,σf) to generate the status map Rm.

As illustrated in Figure 3(b), we use the condition branch of Vid, which takes input as F and Rm, to
compute the mean value map µm

c and the standard deviation map σm
c . As formulated in Eq. (12), the

decoder of Vse uses F, Rm, Z and (µm
c ,σ

m
c) to generate the kernel map Km.

Kernel Aggregation We use the normal distribution to generate an array of latent variable maps
{Zm |m = 1, ..., N}. Each latent variable map can be used by Eq. (12) to produce a set of kernel
maps {Km |m = 1, ..., N}. As illustrate in Figure 3(b), we sum these kernel maps as:

Ku =
1

N

N∑
m=1

Km, (13)

where Ku ∈ RH×W×(S×S×C) is convoluted with the rainy image I for computing the object layer.

5 Experiments

5.1 Experimental Datasets

We compare SEIDNet with state-of-the-art methods, on the Rain100H [16], Rain100L [16],
Rain1400 [19], and SPA [3] datasets. These datasets provide 1, 800/200/12, 600/638, 492 images for
training, along with 100/100/1, 400/1, 000 images for testing. We also evaluate different methods on
the Rain13K [10] dataset, which provides 13, 712 images for training. The test set of Rain13K con-
tains 4, 300 images, which are taken from the test sets of Test100 [23], Test1200 [4], Test2800 [19],
Rain100H, and Rain100L. Rain13K allows the models to be trained on the unified data and evaluated
on the separate test sets, thus justifying the model generalization. We report the performances of rain
removal in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).

5.2 Ablation Study of SEIDNet

Below, we use the test set of Rain100H [16] for the major evaluation of SEIDNet.

Sensitivity to the Number of Kernels Given the testing architecture of SEIDNet, we generate and
aggregate multiple kernels for removing the rains on the image. We change the number N of the
generated kernels for each pixel, evaluating the impact on the performances. We choose the number
N from the set {1, 2, 4, 8, 16, 32}. We report the computational overheads (i.e., GPU memory and
testing time) in Figure 4(a–b), along with the performances (i.e., PSNR and SSIM) in Figure 4(c–d).

6

0.7 0.9 1.3
2.1

3.6

6.5

0.0

2.5

5.0

7.5

1 2 4 8 16 32

0.068 0.070 0.075
0.083

0.099

0.162

0.065

0.105

0.145

0.185

1 2 4 8 16 32

31.457
31.788

32.381

33.217
33.221 33.221

31.45

32.15

32.85

33.55

1 2 4 8 16 32

0.9142
0.9181

0.9242

0.9327
0.9327 0.9327

0.913

0.921

0.929

0.937

1 2 4 8 16 32

(a) GPU Memory (b) Testing Time (c) PSNR (d) SSIM

Figure 4: Sensitivities of GPU memory in GB (a), testing time per image in seconds (b), PSNR (c)
and SSIM (d) to the number of kernels.

WithN = 1, we generate a single kernel for each pixel on the rainy image, yielding 31.457 PSNR and
0.9142 SSIM on the test set of Rain100H. With N = 8, we considerably improve the performances
(up to 33.217 PSNR and 0.9327 SSIM). This is because more kernels better capture the visual patterns
of rain streaks and object textures. Too many kernels (e.g., N = 32) saturate the performances, but
needing more computations. Below, we use N = 8 as default.

SE ID Memory Time PSNR SSIM
D D 1.0 0.0515 29.43 0.8809
G D 1.2 0.0643 29.62 0.8849
D G 1.9 0.0704 31.42 0.9172
G G 2.1 0.0832 33.22 0.9327

Table 1: We refer to SE, ID, Memory and
Time as the status estimation, information
decoupling, GPU memory (GB) and test-
ing time (second). D and G indicate the
discriminative and generative networks, re-
spectively. The performances are reported
on the test set of Rain100H.

Analysis of Network Components The status estima-
tion and information decoupling of SEIDNet are based
on the generative CVAEs for computing the statuses
and kernels. To evaluate the generative power for rain
removal, we experiment with using the discriminative
networks for the status estimation and information de-
coupling. For the status estimation, we resort to the
convolution for predicting a single status map, based on
the feature map of the rainy image. For the information
decoupling, we pass the visual feature map and the sta-
tus map to the convolution, predicting a single kernel
map for the rainy image. The alternative architectures
are provided in the supplementary material.

First, we remove all CVAEs, only using the discriminative network for the status estimation and
information decoupling. In this case, we yield the unsatisfactory 29.43 PSNR and 0.8809 SSIM (see
the first row of Table 1). The discriminative network only provides a pair of status and kernel maps
for the rainy image, missing the critical patterns of rains and objects.

Next, we use the discriminative network for either the status estimation or the information decoupling.
There is a CVAE for capturing the diverse patterns of the statuses or kernels, leading to better results
(see the second and third rows of Table 1) than the discriminative networks. Yet, the performances
achieved by a CVAE are lower than SEIDNet. This is because SEIDNet employs a couple of CVAEs
to comprehensively model the correlation between each pair of status and kernel. We analyze the
correlation between the status and the kernel in the supplementary material.

Network Memory Time PSNR SSIM
D 0.9 0.0453 29.91 0.8905
G 2.1 0.0832 33.22 0.9327

D+G 2.4 0.0879 33.11 0.9310

Table 2: D or G means the discriminative or
generative network that estimates the ker-
nels for rain removal. The performances
are reported on the test set of Rain100H.

Various Combinations of Networks In Table 2, we
compare different strategies of using the discriminative
and generative networks for deraining. Similar to SEI-
DNet, we use 132 convolutional layers to construct a
discriminative network for predicting the kernel maps.
The generative SEIDNet outperforms the discriminative
network (see the first and second rows).

We combine the discriminative and generative networks
by averaging the kernel maps. This combination increases the network parameters but degrades the
performances (see the last row). A smarter combination of the discriminative and generative networks
is needed for reducing the parameters and improving the performances. We illustrate the compared
networks in the supplementary material.

Method Memory Time PSNR SSIM
One CVAE for K 1.6 0.0703 25.21 0.7929

One CVAE for (K, R) 1.9 0.0774 29.03 0.8963
Two CVAEs for (K, R) 2.1 0.0832 33.22 0.9327

Table 3: K/R is the kernel/status maps
yielded by various probability factoriza-
tions. We list the results on the test set of
Rain100H.

Different Ways of Using CVAEs SEIDNet has a pair
of CVAEs that model the factorized distributions of
the status and the kernel. We compare SEIDNet with
the alternative methods, which use a CVAE without
distribution factorization. We list the results in Table 3.
Again, we illustrate the compared networks in the sup-
plementary material.

7

First, we set the single CVAE that only takes the visual feature map of the rainy image as the condition.
This method directly generates the kernel maps. Because the status maps are unavailable for enabling
the focused learning of the kernel maps, this method yields lower performances (see the first row).

Method Rain100H Rain100L Rain1400 SPA Rain13K
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PReNet [11] 29.46 0.8988 37.48 0.9792 32.66 0.9347 40.16 0.9816 31.47 0.9129
JORDER [16] 30.50 0.8967 38.59 0.9834 32.00 0.9347 40.78 0.9811 31.39 0.9118

SPANet [3] 25.11 0.8332 35.33 0.9694 29.85 0.9148 40.23 0.9838 29.83 0.8951
RCDNet [38] 31.28 0.9090 39.99 0.9860 33.04 0.9339 41.47 0.9854 32.02 0.9411

CVID [36] 27.93 0.8765 37.83 0.9882 28.69 0.8722 34.45 0.9437 28.19 0.8584
MPR [10] 30.64 0.9040 34.54 0.9564 33.28 0.9540 43.59 0.9879 33.27 0.9510

EfDeRain [8] 31.14 0.8990 35.04 0.9634 32.91 0.9323 43.77 0.9894 32.11 0.9416
SPDNet [18] 32.68 0.9202 39.59 0.9854 32.89 0.9444 43.55 0.9875 32.01 0.9367

Our SEIDNet 33.22 0.9327 40.67 0.9865 34.84 0.9626 44.96 0.9911 33.62 0.9539

Table 4: We compare SEIDNet with state-of-the-art methods on the test sets of Rain100H, Rain100L,
Rain1400, SPA and Rain13K. The performances are reported in terms of PSNR and SSIM.

Image Input RCDNet MPR SPDNet SEIDNet

Figure 5: Visual results on the image deraining task. We zoom in the image regions (see the blue
rectangles) to compare deraining results of different methods.

Second, we use the single CVAE to generate the status and kernel maps. Again, this CVAE takes the
visual feature map of the rainy image as the only condition. The status and kernel maps are generated
by the separate decoder branches. The single CVAE only depends on the training loss of the status
map, for implicitly guiding the generation of the kernel map. It is less effective than SEIDNet, where
the generation of the kernel map is straightforwardly guided by the status map. As a result, SEIDNet
outperforms this single CVAE (see the last two rows of Table 3).

Discussion on Size of Training and Testing Dataset Conducting experiments on the unbalanced
training and testing splits may reduce the confidence of SEIDNet. Thus, we reduce the training
data in the extremely unbalanced dataset (i.e., SPA dataset with 638K/1K images for training and

Method Rain100H Rain100L Test100 Test1200 Test2800 Overall
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PReNet [11] 27.02 0.8655 32.61 0.9513 24.89 0.8564 31.54 0.9136 31.79 0.9151 31.47 0.9130
JORDER [16] 27.43 0.8677 32.42 0.9476 24.29 0.8542 31.44 0.9110 31.72 0.9145 31.39 0.9118

SPANet [3] 26.88 0.8536 31.26 0.9247 23.17 0.7853 29.93 0.8928 30.07 0.9004 29.83 0.8951
RCDNet [38] 30.17 0.8876 35.06 0.9603 23.79 0.8303 31.68 0.9294 32.41 0.9513 32.02 0.9411

CVID [36] 26.25 0.8444 30.53 0.9025 23.23 0.7824 27.88 0.8401 28.50 0.8685 28.19 0.8584
MPR [10] 30.47 0.8926 36.45 0.9669 30.29 0.9139 32.98 0.9397 33.47 0.9587 33.26 0.9510

EfDeRain [8] 30.44 0.8954 35.45 0.9645 27.67 0.8874 31.41 0.9260 32.53 0.9511 32.11 0.9416
SPDNet [18] 30.56 0.8956 35.37 0.9621 24.87 0.8349 31.49 0.9152 32.59 0.9501 32.12 0.9367

Our SEIDNet 31.18 0.8993 36.83 0.9657 30.29 0.9148 33.16 0.9442 33.93 0.9611 33.62 0.9539

Table 5: We compare SEIDNet with state-of-the-art methods on the test sets of Rain13K. The
performances are reported in terms of PSNR and SSIM.

8

Input Images Desnow Results Dehaze Results Deshadow ResultsInput Images Input Images

Figure 6: Visual results on Snow100K, ITS&OTS and ISTD test sets.

testing). This is done by randomly sampling 1K training images from SPA dataset. The random
sample is three-fold, thus forming three different subsets, each of which contains 1K images for
training different models. The trained models are evaluated on the 1K images in the original test
set. With different subsets for training, SEIDNet yields better results than other methods (see the
Table. 6).

5.3 Comparison with State-of-the-Art Methods

Method Subset A Subset B Subset C
PSNR SSIM PSNR SSIM PSNR SSIM

MPR [10] 35.57 0.9519 36.83 0.9579 37.65 0.9630
EfDeRain [8] 34.37 0.9556 36.18 0.9629 35.44 0.9576
SPDNet [18] 31.84 0.9094 33.57 0.9254 32.93 0.9162

Our SEIDNet 39.07 0.9813 39.90 0.9821 39.97 0.9799

Table 6: We compare SEIDNet with state-of-the-art meth-
ods on three subsets of SPA dataset. The performances
are reported in terms of PSNR and SSIM.

In Table 4, we compare SEIDNet with
the recent methods on the Rain100H,
Rain100L, Rain1400, SPA, and Rain13K
datasets, where SEIDNet outperforms
other methods. We show the deraining
results of the competitive methods in Fig-
ure 5.

SEIDNet is trained on the unified data,
outperforming other methods on 5 test
sets of Rain13K. Thus, SEIDNet shows
a better generalization across different test sets. We average the performances on 5 test sets and report
the results in Table 4. We provide the results on the separate test sets (i.e., the test sets of Test100,
Test1200 [4], Test2800 [19], Rain100H, and Rain100L) in the Table 5. The proposed SEIDNet
outperforms ohter methods on the separate test sets, which justifies the generalization of the deraining
model.

5.4 Extensive Comparison on Different Tasks

Method ITS Subset OTS Subset
PSNR SSIM PSNR SSIM

Grid-Net [39] 32.16 0.9836 30.86 0.9820
MSBDN [40] 33.67 0.9850 33.48 0.9820
FFA-Net [41] 36.39 0.9886 33.57 0.9840

AECR-Net [42] 37.17 0.9901 33.84 0.9837
D-Former [43] 40.05 0.9960 34.95 0.9840
Our SEIDNet 40.62 0.9968 35.72 0.9951

Table 7: We compare SEIDNet with other
methods on ITS&OTS. The results are
listed in terms of PSNR and SSIM.

To evaluate the generalization of SEIDNet on differen
tasks, we use SEIDNet to resolve the desnow, dehaze,
and deshadow tasks. We report the performances on
different tasks in Tables 8, 7, 9, and 10. We provide the
visual results of SEIDNet on different tasks in Figure 6.

In Table 8, we use Snow100K dataset [20] for evalu-
ation. Snow100K has three subsets, i.e., Snow100K-
S, Snow100K-M, and Snow100K-L, where the snow
flakes in the images have small, medium, and large
sizes. The images of Snow100K-S only contains the
small snow flakes. The snow flakes in Snow100K-M
have small and medium sizes, while those in Snow100K-L have small, medium, and large sizes.
In each subset, there are about 17K images for training/testing. We also average the results (see
"Overall") on Snow100K-S, Snow100K-M, and Snow100K-L.

9

Method Snow100K-S Snow100K-M Snow100K-L Overall
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DuRN-S-P [44] 32.27 0.9497 30.92 0.9398 27.21 0.8891 30.12 0.9261
Composition GAN [45] 30.43 0.9612 31.21 0.9431 29.55 0.9021 30.40 0.9335

DesnowNet [20] 32.33 0.9500 30.87 0.9409 27.17 0.8983 30.11 0.9296
DS-GAN [46] 33.43 0.9641 31.88 0.9570 28.07 0.9211 31.11 0.9473

HDCWNet [47] 33.21 0.9623 32.38 0.9541 28.13 0.9253 31.24 0.9472
DDMSNet [48] 34.34 0.9445 32.89 0.9330 28.85 0.8772 32.03 0.9183

RFMPRaLSGAN [49] 33.68 0.9690 30.47 0.9500 29.38 0.9440 31.17 0.9540
RSRNet [50] 31.54 0.9519 30.52 0.9444 26.85 0.9039 29.64 0.9334

Our SEIDNet 35.01 0.9765 33.45 0.9711 29.84 0.9454 32.77 0.9643

Table 8: We compare SEIDNet with state-of-the-art methods on the test sets of Snow100K. The
performances are reported in terms of PSNR and SSIM.

In Table 7, we use the ITS&OTS dataset [21] to justify the generalization of SEIDNet on the haze
removal task. In the ITS&OTS dataset, the ITS subset contains 110,000 indoor images with haze. The
OTS subset has 313,950 outdoor images with haze. We train SEIDNet on the ITS and OTS subsets,
respectively. The network is evaluated on the indoor and outdoor test sets, respectively, where each
test set contains 500 images. In Table 7, we also report the results of other methods for haze removal.

Method Shadow Non-Shadow All
ST-CGAN [22] 13.4 7.7 8.7

DeshadowNet [51] 15.9 6.0 7.6
Mask-GAN [52] 12.4 4.0 5.3
SP+M-Net [53] 9.7 3.0 4.0
PMDNet [54] 9.7 3.0 4.0
AEFNet [55] 6.5 3.8 4.2

CRFormer [56] 5.9 2.9 3.4
Our SEIDNet 6.4 3.4 3.9

Table 9: We compare SEIDNet with other
methods on the test set of ISTD+. The per-
formances are reported in term of RMSE.

In Table 9 and 10, we use the adjusted ISTD
(ISTD+) [57] and ISTD [22] datasets to evaluate the per-
formances of different methods on the shadow removal
task. The images in the ISTD dataset are taken from 135
different scenarios. There are 1,330 and 540 images for
training and testing, respectively. Le et al. [57] adjust
the color inconsistency between the shadow and shadow
free images of ISTD and achieve the ISTD+ dataset.
We use the image regions with/without shadow to test
different methods (see the performances in "Shadow"
and "Non-Shadow"). We also use the full images to
test the methods and report the performances in "All".

6 Conclusions
Method Shadow Non-Shadow All

Mask-GAN [52] 12.67 6.68 7.41
ARGAN [58] 9.21 6.27 6.63

DSC [59] 9.22 6.39 6.67
RIS-GAN [60] 9.15 6.31 6.62

DHAN [61] 8.14 6.04 6.37
CANet [62] 8.86 6.07 6.15

AEFNet [55] 7.77 5.56 5.92
CRFormer [56] 7.32 5.82 6.07
Our SEIDNet 7.47 5.08 5.47

Table 10: We compare SEIDNet with other
methods on the test set of ISTD. The per-
formances are reported in term of RMSE.

The latest progress of rain removal benefits from deep
discriminative networks trained on large-scale datasets.
In this paper, we have proposed a generative network,
SEIDNet, to generate the pixel-wise status and kernel
for rain removal. SEIDNet has two CVAEs, which
model the factorized probability distributions. It learns
the status and kernel spaces. In contrast to the discrim-
inative networks, SEIDNet enables the generation of
multiple statuses for the pixel, for capturing the confu-
sion between the appearances of rains and objects. We
employ these statuses for generating multiple kernels,
reducing the confusing information and refining the
deraining result on the pixel. SEIDNet achieves state-of-the-art performances on the public datasets.
In the future work, we plan to explore an effective strategy of combining the discriminative and
generative networks for rain removal.

Negative Societal Impacts

Our approach can be broadly applied in many scenarios (e.g., autonomous vehicles and video surveil-
lance). One should be cautious of the problematic results, which may give rise to the infringement of
privacy or economic interest.

Acknowledgements

We thank the anonymous reviewers for their constructive comments. This work was supported by The
Hong Kong Polytechnic University under Grant P0030419, Grant P0042740, and Grant P0035358.

10

References
[1] Xiaowei Hu, Chiwing Fu, Lei Zhu, and Phengann Heng. Depth-attentional features for single-image rain

removal. In IEEE CVPR, pages 8022–8031, 2019.

[2] Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng. A model-driven deep neural network for single image
rain removal. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3103–3112, 2020.

[3] Tianyu Wang, Xin Yang, Ke Xu, Shaozhe Chen, Qiang Zhang, and Rynson W.H. Lau. Spatial attentive
single-image deraining with a high quality real rain dataset. In IEEE CVPR, pages 12270–12279, 2019.

[4] He Zhang and Vishal M Patel. Density-aware single image de-raining using a multi-stream dense network.
In IEEE CVPR, pages 695–704, 2018.

[5] Yang Liu, Ziyu Yue, Jinshan Pan, and Zhixun Su. Unpaired learning for deep image deraining with rain
direction regularizer. In IEEE ICCV, pages 4753–4761, 2021.

[6] Ke Xu, Xin Tian, Xin Yang, Baocai Yin, and Rynson WH Lau. Intensity-aware single-image deraining
with semantic and color regularization. IEEE Transactions on Image Processing, 30:8497–8509, 2021.

[7] Yinglong Wang, Chao Ma, and Bing Zeng. Multi-decoding deraining network and quasi-sparsity based
training. In IEEE CVPR, pages 13375–13384, 2021.

[8] Qing Guo, Jingyang Sun, Felix Juefei-Xu, Lei Ma, Xiaofei Xie, Wei Feng, Yang Liu, and Jianjun Zhao.
Efficientderain: Learning pixel-wise dilation filtering for high-efficiency single-image deraining. In
Proceedings of the AAAI Conference on Artificial Intelligence, pages 1487–1495, 2021.

[9] Ye-Tao Wang, Xi-Le Zhao, Tai-Xiang Jiang, Liang-Jian Deng, Yi Chang, and Ting-Zhu Huang. Rain
streaks removal for single image via kernel-guided convolutional neural network. IEEE Transactions on
Neural Networks and Learning Systems, 32(8):3664–3676, 2020.

[10] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan
Yang, and Ling Shao. Multi-stage progressive image restoration. In IEEE CVPR, pages 14821–14831,
2021.

[11] Dongwei Ren, Wangmeng Zuo, Qinghua Hu, Pengfei Zhu, and Deyu Meng. Progressive image deraining
networks: A better and simpler baseline. In IEEE CVPR, pages 3937–3946, 2019.

[12] Xia Li, Jianlong Wu, Zhouchen Lin, Hong Liu, and Hongbin Zha. Recurrent squeeze-and-excitation
context aggregation net for single image deraining. In ECCV, pages 254–269, 2018.

[13] Ruoteng Li, Loong-Fah Cheong, and Robby T Tan. Single image deraining using scale-aware multi-stage
recurrent network. arXiv preprint arXiv:1712.06830, 2017.

[14] Ruoteng Li, Loong-Fah Cheong, and Robby T Tan. Heavy rain image restoration: Integrating physics
model and conditional adversarial learning. In IEEE CVPR, pages 1633–1642, 2019.

[15] Wenhan Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan. Deep joint rain
detection and removal from a single image. In IEEE CVPR, pages 1357–1366, 2017.

[16] Wenhan Yang, Robby T Tan, Jiashi Feng, Jiaying Liu, Shuicheng Yan, and Zongming Guo. Joint rain
detection and removal from a single image with contextualized deep networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 42(6):1377–1393, 2019.

[17] Rui Qian, Robby T Tan, Wenhan Yang, Jiajun Su, and Jiaying Liu. Attentive generative adversarial network
for raindrop removal from a single image. In IEEE CVPR, pages 2482–2491, 2018.

[18] Qiaosi Yi, Juncheng Li, Qinyan Dai, Faming Fang, Guixu Zhang, and Tieyong Zeng. Structure-preserving
deraining with residue channel prior guidance. In IEEE ICCV, pages 4238–4247, 2021.

[19] Xueyang Fu, Jiabin Huang, Delu Zeng, Huang Yue, and John Paisley. Removing rain from single images
via a deep detail network. In IEEE CVPR, pages 3855–3863, 2017.

[20] Yun-Fu Liu, Da-Wei Jaw, Shih-Chia Huang, and Jenq-Neng Hwang. Desnownet: Context-aware deep
network for snow removal. IEEE Transactions on Image Processing, 27(6):3064–3073, 2018.

[21] Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang. Bench-
marking single-image dehazing and beyond. IEEE Transactions on Image Processing, 28(1):492–505,
2018.

11

[22] Jifeng Wang, Xiang Li, and Jian Yang. Stacked conditional generative adversarial networks for jointly
learning shadow detection and shadow removal. In IEEE CVPR, pages 1788–1797, 2018.

[23] He Zhang, Vishwanath Sindagi, and Vishal M Patel. Image de-raining using a conditional generative
adversarial network. IEEE Transactions on Circuits and Systems for Video Technology, 30(11):3943–3956,
2019.

[24] Yu Luo, Yong Xu, and Hui Ji. Removing rain from a single image via discriminative sparse coding. In
IEEE ICCV, pages 3397–3405, 2015.

[25] Yu Li, Robby T Tan, Xiaojie Guo, Jiangbo Lu, and Michael S Brown. Rain streak removal using layer
priors. In IEEE CVPR, pages 2736–2744, 2016.

[26] Sen Deng, Mingqiang Wei, Jun Wang, Yidan Feng, Luming Liang, Haoran Xie, Fu Lee Wang, and
Meng Wang. Detail-recovery image deraining via context aggregation networks. In IEEE CVPR, pages
14560–14569, 2020.

[27] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[28] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approx-
imate inference in deep generative models. In International Conference on Machine Learning, pages
1278–1286, 2014.

[29] Zhijie Wu, Xiang Wang, Di Lin, Dani Lischinski, Daniel Cohen-Or, and Hui Huang. Sagnet: Structure-
aware generative network for 3d-shape modeling. ACM Transactions on Graphics, 38(4):1–14, 2019.

[30] Xin Jin, Zhibo Chen, Jianxin Lin, Zhikai Chen, and Wei Zhou. Unsupervised single image deraining with
self-supervised constraints. In IEEE International Conference on Image Processing, pages 2761–2765,
2019.

[31] Ian Goodfellow, Jean Pougetabadie, Mehdi Mirza, Bing Xu, David Wardefarley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, volume 27, 2014.

[32] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[33] Yanyan Wei, Zhao Zhang, Yang Wang, Mingliang Xu, Yi Yang, Shuicheng Yan, and Meng Wang.
Deraincyclegan: Rain attentive cyclegan for single image deraining and rainmaking. IEEE Transactions on
Image Processing, 30:4788–4801, 2021.

[34] Yuntong Ye, Yi Chang, Hanyu Zhou, and Luxin Yan. Closing the loop: Joint rain generation and removal
via disentangled image translation. In IEEE CVPR, pages 2053–2062, 2021.

[35] Zheng Dong, Ke Xu, Yin Yang, Hujun Bao, Weiwei Xu, and Rynson WH Lau. Location-aware single
image reflection removal. In IEEE ICCV, pages 5017–5026, 2021.

[36] Yingjun Du, Jun Xu, Xiantong Zhen, Ming-Ming Cheng, and Ling Shao. Conditional variational image
deraining. IEEE Transactions on Image Processing, 29:6288–6301, 2020.

[37] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. In NeurIPS, pages 3483–3491, 2015.

[38] Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng. A model-driven deep neural network for single image
rain removal. In IEEE CVPR, pages 3103–3112, 2020.

[39] Xiaohong Liu, Yongrui Ma, Zhihao Shi, and Jun Chen. Griddehazenet: Attention-based multi-scale
network for image dehazing. In IEEE ICCV, pages 7314–7323, 2019.

[40] Hang Dong, Jinshan Pan, Lei Xiang, Zhe Hu, Xinyi Zhang, Fei Wang, and Ming-Hsuan Yang. Multi-scale
boosted dehazing network with dense feature fusion. In IEEE CVPR, pages 2157–2167, 2020.

[41] Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, and Huizhu Jia. Ffa-net: Feature fusion attention
network for single image dehazing. In AAAI, pages 11908–11915, 2020.

[42] Haiyan Wu, Yanyun Qu, Shaohui Lin, Jian Zhou, Ruizhi Qiao, Zhizhong Zhang, Yuan Xie, and Lizhuang
Ma. Contrastive learning for compact single image dehazing. In IEEE CVPR, pages 10551–10560, 2021.

[43] Yuda Song, Zhuqing He, Hui Qian, and Xin Du. Vision transformers for single image dehazing. arXiv
preprint arXiv:2204.03883, 2022.

12

[44] Xing Liu, Masanori Suganuma, Zhun Sun, and Takayuki Okatani. Dual residual networks leveraging the
potential of paired operations for image restoration. In IEEE CVPR, pages 7007–7016, 2019.

[45] Zhi Li, Juan Zhang, Zhijun Fang, Bo Huang, Xiaoyan Jiang, Yongbin Gao, and Jenq-Neng Hwang. Single
image snow removal via composition generative adversarial networks. IEEE Access, 7:25016–25025,
2019.

[46] Da-Wei Jaw, Shih-Chia Huang, and Sy-Yen Kuo. Desnowgan: An efficient single image snow removal
framework using cross-resolution lateral connection and gans. IEEE Transactions on Circuits and Systems
for Video Technology, 31(4):1342–1350, 2020.

[47] Wei-Ting Chen, Hao-Yu Fang, Cheng-Lin Hsieh, Cheng-Che Tsai, I Chen, Jian-Jiun Ding, Sy-Yen Kuo,
et al. All snow removed: Single image desnowing algorithm using hierarchical dual-tree complex wavelet
representation and contradict channel loss. In IEEE ICCV, pages 4196–4205, 2021.

[48] Kaihao Zhang, Rongqing Li, Yanjiang Yu, Wenhan Luo, and Changsheng Li. Deep dense multi-scale
network for snow removal using semantic and depth priors. IEEE Transactions on Image Processing,
30:7419–7431, 2021.

[49] Thaileang Sung and Hyo Jong Lee. Removing snow from a single image using a residual frequency module
and perceptual ralsgan. IEEE Access, 9:152047–152056, 2021.

[50] Hamidreza Fazlali, Shahram Shirani, Michael Bradford, and Thia Kirubarajan. Single image rain/snow
removal using distortion type information. Multimedia Tools and Applications, pages 1–27, 2022.

[51] Liangqiong Qu, Jiandong Tian, Shengfeng He, Yandong Tang, and Rynson WH Lau. Deshadownet: A
multi-context embedding deep network for shadow removal. In IEEE CVPR, pages 4067–4075, 2017.

[52] Xiaowei Hu, Yitong Jiang, Chi-Wing Fu, and Pheng-Ann Heng. Mask-shadowgan: Learning to remove
shadows from unpaired data. In IEEE ICCV, pages 2472–2481, 2019.

[53] Hieu Le and Dimitris Samaras. Physics-based shadow image decomposition for shadow removal. IEEE
Transactions on Pattern Analysis and Machine Intelligence, (01):1–1, 2021.

[54] Hieu Le and Dimitris Samaras. From shadow segmentation to shadow removal. In ECCV, pages 264–281,
2020.

[55] Lan Fu, Changqing Zhou, Qing Guo, Felix Juefei-Xu, Hongkai Yu, Wei Feng, Yang Liu, and Song Wang.
Auto-exposure fusion for single-image shadow removal. In IEEE CVPR, pages 10571–10580, 2021.

[56] Jin Wan, Hui Yin, Zhenyao Wu, Xinyi Wu, Zhihao Liu, and Song Wang. Crformer: A cross-region
transformer for shadow removal. arXiv preprint arXiv:2207.01600, 2022.

[57] Hieu Le and Dimitris Samaras. Shadow removal via shadow image decomposition. In IEEE ICCV, pages
8578–8587, 2019.

[58] Bin Ding, Chengjiang Long, Ling Zhang, and Chunxia Xiao. Argan: Attentive recurrent generative
adversarial network for shadow detection and removal. In IEEE ICCV, pages 10213–10222, 2019.

[59] Xiaowei Hu, Chi-Wing Fu, Lei Zhu, Jing Qin, and Pheng-Ann Heng. Direction-aware spatial context fea-
tures for shadow detection and removal. IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(11):2795–2808, 2019.

[60] Ling Zhang, Chengjiang Long, Xiaolong Zhang, and Chunxia Xiao. Ris-gan: Explore residual and
illumination with generative adversarial networks for shadow removal. In AAAI, pages 12829–12836,
2020.

[61] Xiaodong Cun, Chi-Man Pun, and Cheng Shi. Towards ghost-free shadow removal via dual hierarchical
aggregation network and shadow matting gan. In AAAI, pages 10680–10687, 2020.

[62] Zipei Chen, Chengjiang Long, Ling Zhang, and Chunxia Xiao. Canet: A context-aware network for
shadow removal. In IEEE ICCV, pages 4743–4752, 2021.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Please see the section of Limita-

tion in the supplementary material.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please see

the section of Negative Societal Impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Please see the
section of Implementation Details in the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] Please see the section of Implementation Details in the supplementary
material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Please see the section of
Implementation Details in the supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Method Overview
	Architecture of SEIDNet
	Training Architecture
	Testing Architecture

	Experiments
	Experimental Datasets
	Ablation Study of SEIDNet

	Conclusions

