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Abstract—Context representations have been widely used to
profit semantic image segmentation. The emergence of depth data
provides additional information to construct more discriminating
context representations. Depth data preserves the geometric
relationship of objects in a scene, which is generally hard
to be inferred from RGB images. While deep convolutional
neural networks (CNN) have been successful in solving semantic
segmentation, we encounter the problem of optimizing CNN
training for the informative context using depth data to enhance
the segmentation accuracy.

In this paper, we present a novel switchable context network
(SCN) to facilitate semantic segmentation of RGB-D images.
Depth data is used to identify objects existing in multiple image
regions. The network analyzes the information in the image
regions to identify different characteristics, which are then used
selectively through switching network branches. With the content
extracted from the inherent image structure, we are able to
generate effective context representations that are aware of
both image structures and object relationships, leading to a
more coherent learning of semantic segmentation network. We
demonstrate that our SCN outperforms state-of-the-art methods
on two public datasets.

Index Terms—Convolutional Neural Network, Semantic Seg-
mentation, RGB-D Images, Context Representation.

I. INTRODUCTION

SEMANTIC segmentation has been extensively studied in
computer vision and graphics. Semantic image segmen-

tation is challenging, as it requires per-pixel categorizations
of objects [1], [2], [3], [4] in images. Correctly understanding
the complex relationship of objects in an image is critical.
Using the powerful capabilities of deep convolutional neural
networks (CNNs) [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19] and large-scale image
datasets [20], [21] available for model pre-training, we are
able to create useful image representations that greatly improve
semantic segmentation.

Recently, the employment of depth data has been found
to benefit the analysis of image representations. With the
availability of low-priced, high-performance sensors, depth
data is easily obtained. Depth provides necessary geometric
information, i.e., the spatial layout of objects in 3D scene,
which is not held by RGB images and thus enriches the image
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Fig. 1. Correlation observed between the depth and object co-existence:
in common the near regions, e.g., highlighted in blue rectangles, have
relatively simple object co-existences, while very likely different objects co-
exist densely in the far regions, such as highlighted in red rectangles.

representations. Most of the prior work [22], [23], [24], [25],
[26] provides the depth as an additional channel, alongside
color, of input to CNNs. In principle, depth separates objects
with respect to their spatial layout. But the existing works
miss the opportunity to well utilize the depth data to model
the information propagation between network layers [27], [28],
[29], which is vital to produce useful image representations.
Additionally, compared to color data, depth provides much less
of the crucial semantic information needed for segmentation.
Given this, using depth as an input channel similar to color
would likely create inconsistencies between network inputs
that mislead the network training.

In this work, we use a different but consistent combination
of color and depth to improve the learning of the segmentation
network. We make joint use of the color image and depth data
as cues to update the network, which produces more accurate
context for image segmentation. Specifically here we refer to
context as the co-existence of objects1 in multiple image re-
gions. In semantic segmentation, aggregating the convolutional
features of image regions [27], [30], [31], [32], [33], [28],
[34], [35] has become a de facto core process for generating
context representation. Our idea is to better utilize the image
structure and depth data to guide the aggregation of features
by considering object co-existence, which is introduced below.

A. Our Findings

We can observe, e.g., from Fig. 1, the correlation between
depth and object co-existence. In far regions that have high
depth, the objects in general densely co-exist. Such complexity

1The object co-existence is generally represented by the object categories
that are coherently present.
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Fig. 2. The overview of our switchable context network (SCN). Given a
RGB image, we produce the convolutional feature maps layer-by-layer in
a resolution-descending order. Our SCN firstly produces the local structural
feature maps, which are used to compute the context representations in top-
down switchable information propagation. The context representations are
combined with the convolutional features to form the intermediate feature
maps, which are used for the final semantic segmentation.

yields rich yet distracting information. It is thus critical to
reduce the clutter from diversities when constructing stably
useful context. The near regions that have low depth usually
contain fewer objects and variants. A wider range of context
shall hence be included to alleviate the problem caused by
the lack of object diversities. It requires an adaptive way to
construct and switch between different contexts, which are
dependent upon different levels of object co-existences closely
associated with the depth.

B. Our Contributions

Based on our findings, two contributions are made here.
First, we newly model the information propagation between
network layers. Unlike the structure-insensitive information
propagation proposed in [27], [28], [29], our local structural
information propagation utilizes the super-pixels, which are
defined by the latent image structure, to capture more relevant
content of the image regions. Second, by sensing different
levels of object co-existences, the features can be flexibly
switched through network branches to capture useful contex-
tual information on demand. After combining the structure of
image regions and the object co-existences together consis-
tently to serve as the guidance, our SCN excels in learning
with effective context representations. Therefore, as shown in
Fig. 2, we introduce SCN with the following features:
• A new model of contextual information propagation,

which includes: i) local structural information propaga-
tion; ii) and top-down switchable information propaga-
tion. All propagations are guided by super-pixels [36],
[37] that are defined by the underlying image structure.

• Two switchable branches enabling the network to pro-
cess different image regions accordingly: i) one branch
with a compression architecture to reject over-cluttered
information of the image regions; ii) the other branch
with an expansion architecture to broaden the receptive
fields of the less informative image regions presented in
convolutional feature maps.

We evaluate our method on two public datasets. The results
indicate that our SCN achieves the mean intersection-over-
union of 49.6 on the NYUDv2 dataset [38] and 50.7 on the
SUN-RGBD dataset [21], both of which outperform state-of-
the-art methods.

II. RELATED WORK

A. Resolution Recovery of Convolutional Features

The fully convolutional network (FCN) [23], [32], [39],
[40], [41] is the prevalent architecture for semantic segmen-
tation. Given input images, FCN has stacked down-sample
operations to compute the features having high-level seman-
tics. However, such down-sampling progressively reduces the
resolution of features, leading to the loss of object detail. To
address this issue, Chen et al. [39] and Yu et al. [42] apply
atrous convolution to preserve the feature resolutions, at the
significant cost of memory space. Badrinarayanan et al. [43],
Noh et al. [44] and Ghiasi et al. [45] exploit deconvolution
and unpooling to increase the resolution of the last convolu-
tional feature map. These methods, however, still fail to reuse
the high-resolution feature maps computed by the preceding
convolutional layers, thus ignoring the richer information [32],
[46] they may provide.

Other recent works [27], [28], [29], [46] propose to use
a top-down cascaded network to preserve semantic meanings
and object details simultaneously. With the lateral connection
of top-down cascaded architectures, the semantic content of
low-resolution features can be propagated as contextual in-
formation to strengthen the high-resolution features. The top-
down cascaded architecture eventually yields high-resolution
features that result in compelling performance on seman-
tic segmentation. The common method for propagating the
contextual information uses interpolation and deconvolution
operations to match the resolutions of different feature maps.
However, these operations propagate the information regard-
less of the image structure, indiscriminately propagating the
information from low-resolution features to the regions reg-
ularly pre-defined in high-resolution features. In the scenario
of semantic segmentation of RGB-D images, such a common
top-down network inevitably limits the usable information
for better learning segmentation features. In our top-down
cascaded network, we employ super-pixels to guide the infor-
mation propagation, which makes the inherent image structure
available to all context representations.

B. Contextual Information for Semantic Segmentation

Contextual information has been intensively used to benefit
semantic segmentation. Previous works [47], [32], [39], [40],
[41] use traditional graphical models [48] to capture the
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interaction between adjacent image regions as part of the
contextual information. Similarly, aggregation of the convo-
lutional features of image regions is a popular and effective
way to construct contextual information, as evidenced in [27],
[31], [28], [34], [42], [46]. Yu et al. [42] apply multi-scale
atrous convolutions to compute segmentation scores. Chen
et al. [39], [46] use different atrous convolutions to extract
contextual information from convolutional feature maps. Lin
et al. [28] and Zhao et al. [34] use different combinations
of convolutional and pooling kernels to enrich the contextual
information. Peng et al. [27] and Mostajabi et al. [31] group a
wide range of convolutional features to embed global context
in segmentation features. All these methods ignore image
structures.

Recent works [24], [30], [31] use super-pixels as cues
to aggregate the convolutional features and form context
representations. Lin et al. [35] consider the relationship of
super-pixels when constructing context representations. As
super-pixels represent image structures in some sense, context
representations generated using these methods are associated
closely with the image structure.

Nonetheless, to construct the context representation for
an image region, existing works aforementioned aggregate
the convolutional features computed by canonical upstream
network. We suggest a different approach, using network
branching architectures to construct context representations
adaptively and selectively, allowing better handling of object
co-existences that look different in different image regions.

C. Semantic Segmentation of RGB-D Image

The use of depth data to assist semantic image segmenta-
tion has been studied in many prior works [22], [24], [25],
[38], [49]. Depth data provides a better understanding of the
geometric relationships between objects and benefits image
segmentation. For instance, Silberman et al. [38] use color
along with depth to compute the support relations of objects,
while Gupta et al. [49] construct geometric contours using
depth data as a cue.

Because deep neural networks [5], [6], [7] perform well
at image recognition, many researchers apply CNNs to help
the segmentation of RGB-D images. Couprie et al. [50] use
color and depth from images as a unified input to train CNNs.
However, the output from the CNNs loses much of the useful
information contained in the depth data. To better exploit the
depth content, Gupta et al. [22] and He et al. [24] encode
depth images as HHA images [49], storing the horizontal
disparity, the height above ground, and the angle of the local
surface normal for each pixel. Long et al. [23] and Wang et
al. [25] use color and HHA images as inputs to train CNNs
to compute more effective segmentation features. Though the
enriched features do improve the segmentation accuracy, there
is a lack of the semantic relationship between color and
HHA images. Directly combining them [22], [23], [24], [25]
inevitably introduces inconsistencies into the network learning.

In our work, depth data plays a more important role in
guiding the construction of context representations. We use the
depth to identify the object co-existences within image regions.

TABLE I
LIST OF SYMBOLS WITH DESCRIPTION.

symbol description

ri the ith region in the feature maps

y ground-truth labels

Sn the nth super-pixel

F l the lth intermediate feature maps

M l the lth convolutional feature maps

Dl the lth local structural feature maps

Dl
c the lth compression feature maps

Dl
e the lth expansion feature maps

Dl→(l+1) context representation produced by top-down
switchable information propagation

H(:) local structural mapping

C(:) compression network architecture

E(:) expansion network architecture

L(:) softmax loss function

J(:) training objective function of SCN

A switchable feature aggregation method is then proposed
to produce appropriate context representations adaptively for
image regions that contain different levels of object co-
existences. The framework thus facilitates a more coherent
learning of segmentation features from the color and depth
data, yielding better segmentation results.

III. SWITCHABLE CONTEXT NETWORK

We present here a switchable context network (SCN), where
the propagation of contextual information is adaptively guided
by the image structure and object co-existence. In addition to
generic convolutional features produced by an FCN from the
same resolution, our SCN propagates contextual information
from low-resolution feature maps to high-resolution ones in
a top-down manner with a switchable feature aggregation
scheme. Instead of regular propagation strategies [28], [27],
[46], [29], we employ super-pixels that are defined according
to the inherent image structure. We list the critical symbols
and their descriptions in Table I for reference.

The architecture of our SCN is shown in Fig. 2. Given an
input image I , the SCN produces L feature maps {F l} that
have different resolutions. The feature maps are depicted in a
top-down shape, where F 1 has the lowest resolution and FL

(given to the classifier for pixel-wise categorization) has the
highest resolution. We formulate the feature map F l+1 as:

F l+1 = M l+1 +Dl→(l+1), l = 0, ..., L− 1, (1)

where Dl→(l+1) denotes the context representation that is used
to enhance the generic convolutional feature M l+1 produced
by the FCN; D0→1 = 0.

As illustrated in Fig. 3, the construction of our contextual
representation Dl→(l+1) has two stages: local structural and
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Fig. 3. The construction of our contextual representation undergoes two information propagations: (a) local structural information propagation. In this stage,
each region (a color node of the regular grid in the intermediate feature maps) receives the information from the regions located in the same super-pixel. The
regions (the enlarged node of the regular grid) having richer information constitute the local structural feature maps; (b) top-down switchable information
propagations. We compute the average depth value for each super-pixel. In the last column, the super-pixels highlighted in red and blue contain the regions that
provide the information output by compression and expansion architectures, respectively. Each region (a color node of the regular grid in the local structural
feature maps) receives the information from the regions located in the adjacent super-pixels, and form the region (the highlighted red node in the context
representations) having accurate contextual information. For illustration, the context representations are shown in the same size with the local structural feature
maps. Actually, the context representations have larger resolution than the local structural feature maps do.

top-down switchable information propagations. The first stage
processes a region using the contextual information from
the regions belonging to the same super-pixel. Contextual
information is propagated between the regions in the same
convolutional feature map (Fig. 3(a)). The stage computes the
new feature Dl where each region respects the local property
of a super-pixel.

Next, the top-down switchable stage (Fig. 3(b)) generates
Dl→(l+1). Each region in F l+1 receives the information
propagated from F l that has a lower resolution. In handling
each region, the process uses information from super-pixels in
adjacent regions to capture richer object relationships. For a
given receiver region, our network selects a proper branch to
process the contextual information propagated from different
regions. For the regions having complex object co-existences,
the branch equipped with the compression architecture is used
to reduce excessive diverse information (clutter) while retain-
ing the critical context information. For the regions lacking
discriminative information, the expansion architecture includes
more global object content to enrich contextual information.

IV. CONTEXTUAL INFORMATION PROPAGATION

We detail in this section how we propagate information from
the two stages.

A. Local Structural Information Propagation

Given an input image I , we generate a set of non-
overlapping super-pixels {Sn}. In the feature maps, the region
2 ri uniquely defines a receptive field in image I . Φ(Sn)
defines a set of centers of regular receptive fields that are

2Here we refer the region as a node in the feature maps.

located within the super-pixel Sn. For ri, the local structural
information propagation step produces the feature as:

Dl(ri) = F l(ri) +
∑
ri 6=rj

H(F l(rj)),

s.t. ri, rj ∈ Φ(Sn), (2)

where Dl ∈ RC×H×W is the local structural feature maps.
F l(ri) ∈ RC is the lth intermediate feature maps computed
by the SCN. See also Eq (1). For the region ri, the feature
F l(ri) directly contributes to the new feature Dl(ri) ∈ RC .
Thus the new feature Dl(ri) retains the local content of the
region ri. In addition, the other regions located in the same
super-pixel Sn are processed by a local structural mapping
H(:). In our implementation, we model the mapping H(:)
as two sequential convolutions as shown in Fig. 4(a). Each
convolution has 1 × 1 local kernels without changing the
receptive fields of the corresponding regions. In this way, the
local information propagation allows the local pattern of the
super-pixel Sn to be adaptively encoded in the feature Dl(ri).
In addition, the 1 × 1 convolutional kernels are manipulated on
each local region, leading to a fast computation of the local
structural feature maps Dl. We empirically find that larger
kernels (e.g., 3 × 3 and 5 × 5 kernels) lead to a drop of
the segmentation accuracy. Also, the larger kernels and more
convolutional layers (e.g., 3, 4 and 5 layers) inevitably increase
the computational complexity of the network.

We emphasize that the local structural information propa-
gation plays an important role. As formulated in Eq (2), this
propagation uses all the regions resident in the same super-
pixel to produce new features in which the structural infor-
mation of the whole super-pixel is embedded. The structural
information strengthens the relationship between the regions
in the same super-pixel, providing better features that are used
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Fig. 4. The illustrations for (a) local structural mapping, (b) compression
architecture, and (c) expansion architecture, respectively.

in subsequent steps of the top-down propagation.

B. Top-down Switchable Information Propagation
Compared to the local information propagation that pro-

cesses each local super-pixel, the top-down information prop-
agation accounts for the interaction between distant regions
in adjacent super-pixels, which may have various object co-
existences. As we have observed, there is the correlation
between depth and object co-existences. In the top-down
information propagation, we propose a switchable feature ag-
gregation scheme guided by depth data. This feature produces
context representations that reflect the different object co-
existences of the regions in multiple super-pixels.

In Eq (1), we have denoted Dl→(l+1) as the context repre-
sentation that is used to enhance the feature F l. Given ri ∈ Sn,
the context representation Dl→(l+1)(ri) is formulated as:

Dl→(l+1)(ri) =∑
Sm∈N (Sn)

∑
rj∈Φ(Sm)

(λcD
l
c(rj) + λeD

l
e(rj)),

s.t. λc = 1(d(Sn) < d(Sm)), λe = 1(d(Sn) ≥ d(Sm)).
(3)

We define Sm ∈ N (Sn) if the super-pixels Sn and Sm are
adjacent. Eq (3) models the top-down information propagation
from the region rj , which resides in the super-pixel Sm, to the
given region ri. Dl

c ∈ RC×H×W represents the compression
feature maps while Dl

e ∈ RC×H×W represents the expansion
feature maps, and d(Sn) denotes the average depth of the
super-pixel Sn. We use the indicator function 1(:) to switch
between the compression and expansion features. Given the
condition d(Sn) < d(Sm) that means the super-pixel Sn is in
a nearer field comparing to Sm, we activate the compression
feature to refine the information of the region rj . If the super-
pixel Sn is in a more distant field than Sm is, we use the
expansion feature to enrich the information of rj .

The compression feature maps Dl
c is computed by the com-

pression architecture C. To reduce the excessively diverse in-
formation within source regions, the compression architecture
learns to re-weight the corresponding regional features. Given
a source region rj in Eq (3), the compression architecture C
outputs the refined feature maps Dl

c ∈ RC×H×W that is:

Dl
c(rj) = Dl(rj)� C(Dl(rj)). (4)

The compression architecture takes the local structural feature
maps Dl in Eq (2) as input. The details of C is shown in
Fig. 4(b). The compression architecture consists of 1×1, 3×3
and 1 × 1 convolutional layers. The first 1 × 1 convolution
is used to reduce the dimension of the feature Dl(ri) by
half. The dimension reduction procedure can filter over-diverse
information out while preserving useful information well.
After the dimension reduction, we reconstruct the information
of in the features by using 3× 3 convolution. The last 1× 1
convolution produces a re-weighting vector C(Dl(rj)) ∈ RC

that selects useful information from the feature Dl(rj) to
produce Dl

c(rj), similar to the attention model in [51].
We meanwhile use an expansion architecture E(:) to enrich

the feature of the source region rj . The expansion architecture
is shown in Fig. 4(c). We use the term of “expansion”
because the architecture contains relatively large convolutional
kernels that enlarge the receptive field of the region rj . As
already investigated in [27], [34], larger receptive fields help
to produce richer context. The expansion architecture E(:)
produces the feature map Dl

e ∈ RC×H×W where

Dl
e(rj) = Dl(rj) + E(Dl(rj)). (5)

Again, Dl is considered as the input for the expansion architec-
ture. As shown in Fig. 4(c), the expansion architecture consists
of 7× 7 , 1× 1 and 7× 7 convolutional layers. The first 7× 7
convolutional layer employs relatively large kernels to broaden
receptive field and learn relevant context. The following 1× 1
is used for dimensional reduction. In our implementation, the
1 × 1 convolution reduces the feature dimension by half.
The reduction operation removes the redundant information
that may be included by the upstream large kernels, which
produces compact feature for the consequent process. Then
we have another 7 × 7 convolution to recover the feature
dimension. This last 7 × 7 convolution adapts the outcome
feature E(Dl(rj)) ∈ RC to match with the dimension of
Dl(rj). With the expansion architecture, the produced feature
Dl

e(rj) includes more context with less redundant information,
as it is based on the relatively clean feature output by the
reduction operation.

V. NETWORK TRAINING

The high-resolution feature map FL produced by the SCN
(Eq (1)) is fed to the pixel-wise classifier for semantic segmen-
tation. The pixel-wise classifier outputs a set of class labels y
for the pixels of the input I . The label set y is defined as:

y = f(FL), (6)

where the function f(:) is a softmax regressor that gives
pixel-wise categorization. We denote y∗ as the ground-truth
annotation of the image I . We predict the pixel-wise class
labels of I using Eq (6).

We train the SCN with the following objective function:

J(FL) =
∑
ri∈I

L(y∗(ri), y(ri)), (7)

where the function L(:) is softmax loss that widely used for
penalizing pixel-wise classification error. For the region ri,
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we denote y(ri) as its predicted class label. We minimize the
training objective of Eq (7) to optimize the parameter set of the
SCN. The standard stochastic gradient descend (SGD) method
[5] is applied as the solver.

Using Eq (1), Eq (2) and Eq (3), we can update all features
of the regions in the feature maps produced by the SCN. For
the feature F l(ri) of the region ri ∈ Φ(Sn) in the feature map
F l, we compute the gradient as:

∂J

∂F l(ri)
=∑

Sm∈N (Sn)

∑
rj∈Φ(Sm)

∂J

∂F l+1(rj)

∑
rk∈Φ(Sn)

∂F l+1(rj)

∂Dl(rk)

∂Dl(rk)

∂F l(ri)
,

(8)

where

∂F l+1(rj)

∂Dl(rk)
= λc

∂Dl
c(rk)

∂Dl(rk)
+ λe

∂Dl
e(rk)

∂Dl(rk)
,

λc = 1(d(Sn) < d(Sm)), λe = 1(d(Sn) ≥ d(Sm)). (9)

By using Eq (8) to optimize the feature F l(ri), we find that
the region ri ∈ Φ(Sn) receives the update signal ∂F l+1(rj)

∂Dl(rk)
from the region rk that also resides in the same super-pixel
Sn. This update signal adaptively adjusts the features of the
regions located in the same super-pixel, in order to make those
regions consistently represent the overall property of a super-
pixel. As shown in Eq (8), the region ri also receives the
update signal from the region rj in F l+1 that resides in the
adjacent super-pixel Sm. As the relationship of ri, rj and rk
are defined by super-pixels, one can see that the feature update
here well preserves the image structure.

Besides image structure, the depth simultaneously guides
the update of the features. In Eq (8), the update signal from
the region rj is denoted as ∂J

∂F l+1(rj)
. When propagated to

the region ri, the update signal ∂J
∂F l+1(rj)

is influenced by the

signal ∂F l+1(rj)
∂Dl(rk)

, which can be expanded as in Eq (9). The
parameters λc and λe are then used as switches, determined
by the average depths of Sn and Sm. With Eq (4) and Eq (5),
the signals ∂Dl

c(rk)
∂Dl(rk)

and ∂Dl
e(rk)

∂Dl(rk)
are expanded as:

∂Dl
c(rk)

∂Dl(rk)
= C(Dl(rk)) +Dl(rk)� ∂C(Dl(rk))

∂Dl(rk)
(10)

and

∂Dl
e(rk)

∂Dl(rk)
= 1 +

∂E(Dl(rk))

∂Dl(rk)
. (11)

If d(Sn) < d(Sm), the signal ∂Dl
c(rk)

∂Dl(rk)
(Eq (10)) makes

an impact on the signal ∂J
∂F l+1(rj)

that is propagated from
the region rj . In Eq (10), the compression architecture C(:)
can be optimized by back propagation. More importantly, the
re-weighting vector C(Dl(rk)) also takes part in the update
process. As modeled in Eq (4), the vector C(Dl(rk)) is used
to select the important information of the feature Dl(rk) to
construct the feature F l+1(rj). Reversely, the re-weighting
vector C(Dl(rk)) adjusts the back-propagated signal ∂J

∂F l+1(rj)

in the training stage. With the re-weighting vector C(Dl(rk)),

useful signal from the region rj can be passed to better update
the feature of the region ri.

If d(Sn) ≥ d(Sm), the signal ∂Dl
e(rk)

∂Dl(rk)
(Eq (11)) affects

the signal ∂J
∂F l+1(rj)

. In Eq (11), we find a factor of 1 that
forms a skip connection between the regions ri and rj . That
means the back-propagated signal from rj to ri does not need
to be processed by the expansion architecture. We emphasize
the importance of this fact. Though the expansion architecture
employs more context of the feature by broadening the re-
ceptive field, the large convolutional kernels of the expansion
architecture may distract the back-propagated signal from rj
to ri during the training. Using the skip connection between
the regions ri and rj , we allow the back-propagated signal to
be propagated directly from rj to ri.

In summary, our SCN wisely takes image structure and
depth data as cues to guide the training procedure, which
yields optimized features for a better segmentation.

VI. IMPLEMENTATION DETAILS

A. Data Preparation

Given a RGB image, we apply the toolkit [37] to compute
the super-pixels in it. The size of the super-pixels is tunable
by setting a scale parameter. In our SCN, the super-pixels are
used to guide the construction of context representations. Each
RGB image is given along with a depth image. The single-
channel depth images are used in the top-down switchable
information propagation, as described in Section IV.

In our experiments, the original RGB images were used to
train the segmentation network. Afterward, we compute a 3-
channel HHA image [49], [22] based on the corresponding
depth image. The HHA images contain rich geometric infor-
mation of pixels used to train another segmentation network
to enhance segmentation accuracy.

For a RGB image, the generation of super-pixels and a HHA
image takes about 0.5 second, which is completed before the
network training. We can simply use GPUs to accelerate this
generation process for handling more data.

B. Network Construction

We use the Caffe platform [52] for network construction.
Our SCN is applicable to different FCN variants [23], [39],
[28], [34], [27], [45]. In our implementation, we choose
ResNet-101 [7] pre-trained on ImageNet [20] to serve as
the network architecture. We apply atrous convolution [39]
to augment the ResNet-101 architecture as an 8-stride net-
work, which produces high-quality segmentation results. The
ResNet-101 network is mainly used for internal study of
our SCN. When we compare our SCN to state-of-the-art
methods, we utilize deeper ResNet-152 architectures [7] to
further improve segmentation results.

In Eq (1), we use the generic convolutional feature maps
computed by FCN to construct context representations. We
note that the ResNet-101 and ResNet-152 architectures [7]
have similar five-stage convolutions, where each stage has
several intermediate convolutional feature maps. For a stage
of convolutions, we select the last convolutional feature map
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TABLE II
SENSITIVITIES TO THE SIZE OF SUPER-PIXELS. THE PERFORMANCE IS

EVALUATED ON THE NYUDV2 VALIDATION SET. EACH SEGMENTATION
ACCURACY IS REPORTED IN TERMS OF MEAN IOU (%).

scale 500 1000 2000 4000 8000 12000

mean IoU 42.7 43.5 45.6 43.6 44.2 42.9

TABLE III
STRATEGIES OF PROPAGATING LOCAL INFORMATION PROPAGATION,

EVALUATED ON THE NYUDV2 VALIDATION SET. EACH SEGMENTATION
ACCURACY IS REPORTED IN TERMS OF MEAN IOU (%).

strategy local information propagation mIoU

w/o super-pixel
global identity mappings 40.3

Noh et al. [44] 41.8
Chen et al. [39] 43.0

w/ super-pixel

Lin et al. [35] 43.8
3 × 3 kernels 44.5
5 × 5 kernels 42.1

SCN 45.6

that is relatively stronger than other feature maps computed
from the same stage, as following [29].

Here we apply the standard SGD solver [5] to optimize
the network parameters. With a multiple-GPU technique, we
set the size of each mini-batch as 16. We enable the update
of batch normalization to achieve better optimization. The
network is fine-tuned with a learning rate of 1e-10 for 60K
mini-batches. After that, we decay the learning rate to 1e-
11 for the next 40K mini-batches. In our experiments, the
network is trained for recognizing about 40 categories. With
the transferring capacity of deep network, the trained network
can be fine-tuned on more complex datasets. It saves the
training time and increases the segmentation accuracy.

VII. EXPERIMENTAL RESULTS

We test our SCN on two public benchmarks for semantic
segmentation of RGB-D images, which are NYUDv2 [38]
and SUN-RGBD [21]. The NYUDv2 [38] dataset has been
widely used for evaluating segmentation performance. It has
1,449 RGB-D images. In this dataset, 795 images are split for
training and 654 images are for testing. As suggested in [22],
we select a validation set that comprises of 414 images from
the original training set. We use the pixel-wise annotations
provided in [49], where all pixels are labeled by 40 categories.
We use the NYUDv2 [38] dataset for the main evaluation of
our method. We further use the SUN-RGBD [21] dataset for
extensive comparison with state-of-the-art methods.

We follow the widely-used multi-scale testing [28], [34]
to compute the segmentation results. That is, we use four
scales (i.e., 0.6, 0.8, 1, 1.1) to resize the testing image before
providing it to the network. The output segmentation scores of
the re-scaled images are then averaged for the post-processing
of dense CRF [48]. All segmentation performances in this
paper are reported in terms of mean intersection-over-union
(IoU) [23], [28], [22].

A. Experiments on NYUDv2 Dataset

Sensitivity to the Number of Super-pixels
In our SCN, the control of contextual information is in part

subject to the size of super-pixels. Here, we investigate how
sensitive our SCN is regarding to different super-pixel sizes.
Using the toolkit [37], we adjust the size of super-pixels by a
scale parameter. We empirically select different scales, which
are 500, 1000, 2000, 4000, 8000 and 12000. For each scale,
we train our SCN based on ResNet-101 model [23]. The inputs
to SCN are RGB image for segmentation and depth image for
switching the features. The segmentation accuracies on the
validation set of the NYUDv2 [38] are listed in Table II.

Among all the cases in Table II, we find that the scale of 500
leads to the lowest segmentation accuracy. This occurs because
the super-pixels are too small and contain too little contextual
information. As the scale increases, we observe that the
segmentation performance improves. Empirically, we observe
that our SCN performs the best when the scale is set to 2000.
We find super-pixels that are too large reduce performance.
This is because too large super-pixels may include excess
objects which limit the stages preservation of local properties
of the super-pixels. In subsequent experiments, we continued
using the scale of 2000 to construct our network.

Strategies of Propagating Local Structural Information
The local structural information propagation produces fea-

tures that have stronger relationship with the regions. Here
we conduct an ablation analysis in Table III, where the
local structural information propagation is replaced with other
strategies using structural information.

The first experiment measures the performance of other ap-
proaches that do not use local structural information. We apply
the full version of an SCN that achieves the segmentation
score of 45.6 on the NYUDv2 validation set. Then we retrain
our SCN without propagating the local structural information
of super-pixels. Equivalently, all the intermediate features are
processed by global identity mappings. In this way, we achieve
the accuracy of 40.3. We also apply interpolation [39] and
deconvolution [44] to produce new features, where each region
contains information of wider but regular receptive field. These
methods produce structure-insensitive features that achieve
lower scores than our SCN does.

We note that there are several alternatives to propagate
the local structural information of super-pixels. One simple
way is proposed by Lin et al. [35], where the information
is computed by averaging the features of the regions in the
same super-pixel. It means that the local structural mappings
are implemented with identity kernels. With this, we achieve
the segmentation score of 43.8. As identity kernels do not
contain learnable parameters, they miss the flexibility to select
useful information. We also investigate different convolutional
kernels, which have the sizes of 3×3 and 5×5. Compared with
1 × 1 kernels that capture the finer structure of super-pixels,
the larger kernels yield inferior results.

Evaluation on Top-down Switchable Propagation
Given local structural features, we apply the top-down

switchable information propagation to yield context represen-
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TABLE IV
ABLATION EXPERIMENT ON TOP-DOWN SWITCHABLE INFORMATION

PROPAGATION. THE RESULTS ARE EVALUATED ON THE NYUDV2
VALIDATION SET.

super-pixel depth method mean IoU

no no Noh et al. [44] 42.4
Chen et al. [39] 42.7

no yes Lin et al. [29] 43.4

yes no
expansion 41.6

compression 43.0
Lin et al. [35] 44.1

yes yes SCN 45.6

TABLE V
STRATEGIES OF INFORMATION COMPRESSION. THE RESULTS ARE

EVALUATED ON THE NYUDV2 VALIDATION SET.

compression
architecture

[1× 1 conv, relu]
[1× 1 conv, relu]

[1× 1 conv, relu]
[3× 3 conv, relu]

[1× 1 conv, relu]
[3× 3 conv, relu]
[1× 1 conv, relu]

mean IoU 42.3 41.7 45.6

tations. This scheme is guided by super-pixels and depth,
which are explored for their efficacy in this experiment.

In Table IV, we measure our top-down propagation without
using both super-pixels and depth. Instead, we just apply
deconvolution [44] and interpolation [39] to construct the
context representations. The obtained segmentation accuracies
are lower than our SCN.

In the next test, we disable the guidance of super-pixels
only, followed by top-down information propagation [29].
Without super-pixels, we perform switchable process prop-
agation on the compression and expansion feature maps as
[30], [53], where the information propagation is defined by
regular kernels. Compared to this setting, our complete SCN
has better performance. In addition to the fact that super-pixels
provide more natural information propagation, the average
depth computed on each super-pixel enables more stable
feature switching by avoiding noisy depth of isolated regions.

We also study the case where depth is not used in the
top-down switchable information propagation. In this case,
we respectively regard the compression and expansion feature
maps as context representations, as shown in Table IV. We
also compare our method with the previous best method [35]
that uses super-pixels without the depth. They underperform
the switchable construction of context representations driven
by the depth. This is because the depth data is not used to dif-
ferentiate the far and near regions, for which the compression
and expansion feature maps cannot be switched accordingly.

Compact Features for Adjusting Contextual Information
The top-down switchable information propagation consists

of compression and expansion architectures, which provides
different contextual information. These architectures use com-
pact features to generate context representations. In this exper-
iment, we study our compression and expansion architectures,
and show that they can achieve effective compact features to
adjust the contextual information.

In Table V, we provide a comparison on different designs

TABLE VI
STRATEGIES OF INFORMATION EXPANSION. THE RESULTS ARE

EVALUATED ON THE NYUDV2 VALIDATION SET.

expansion
architecture [7× 7 conv, relu]

[7× 7 conv, relu]
[7× 7 conv, relu]

[7× 7 conv, relu]
[1× 1 conv, relu]
[7× 7 conv, relu]

mean IoU 43.8 44.2 45.6

of compression architectures. We note that a naive way to con-
duct information compression is to apply a 1 × 1 convolution
for learning the compact features and a consequent 1 × 1
convolution for restoring the feature dimension, which yields
lower accuracy than our compression architecture. Compared
to the simple alternative that uses two sequential 1 × 1
convolutions, our compression architecture involve a 3 × 3
convolution (Fig. 4(b)) between two 1 × 1 convolutions. To
some extent, the 3 × 3 convolution achieve wider range of
contextual information, complementing the compact features
resulted by dimension reduction that may lead to the loss
of information. We note the features attained by 3 × 3
convolution of our compression architecture are still compact.
When we remove the last 1 × 1 convolution used for restoring
the feature dimension, and directly use the 3 × 3 convolution
to produce the relatively high dimension features, we find that
the performance is lower than our compression architecture.
It shows the importance of the compact features generated by
our 3 × 3 convolution.

In Table VI, we study our expansion architecture, and com-
pare it with different ways of information expansion. Again,
we simply use a single convolution that has 7 × 7 kernels to
enlarge the receptive files, which produces the segmentation
score of 43.8. We suppose that adding extra convolution having
large kernels is able to improve the performance further. Thus
we use two 7 × 7 convolutions to achieve a better score
of 44.2. But we empirically observe that adding more con-
volutional layer yields negligible improvement. We note that
the segmentation scores produced by the above convolutions
are lower than our expansion architecture, which use 1 × 1
convolution to compute compact features.

Comparisons with State-of-the-art Methods
In Table VII, we compare our SCN with state-of-the-art

methods. We follow the comparison rule in [35] by dividing
all the methods into two groups. We note that all the methods
are evaluated on the NYUDv2 test set.

The first group consists of the methods that use only RGB
images for segmentation. We list their performances in the
column RGB-input of Table VII. Typically, the deep net-
works proposed by Lin et al. [28] have top-down information
propagation, yielding high-quality segmentation features. The
accuracy reported in [28] is the highest in this group.

We also compare our SCN with the second group of meth-
ods, which take RGB-D images as input. The performances are
reported in the column RGB-D-input of Table VII. We encode
each depth image into an HHA image with 3 channels for
maintaining richer geometric information [49], [22]. Following
Long et al. [23], we use HHA images to train an independent
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(a) Image (b) Ground-truth (c) CFN (d) SCN

Fig. 5. A sample of the comparison to the state-of-the-art model [35] and our SCN. The images are selected from NYUDv2 [38] dataset.

TABLE VII
COMPARISONS WITH OTHER STATE-OF-THE-ART METHODS ON THE

NYUDV2 TEST SET. EACH SEGMENTATION ACCURACY IS REPORTED IN
TERMS OF MEAN IOU (%).

RGB-input mean IoU RGB-D-input mean IoU
Gupta et al. [22] 28.6
Fayyaz et al. [54] 30.9
Deng et al. [33] 31.5

Long et al. [23] 29.2 Long et al. [23] 34.0
Kendall et al. [55] 32.4 Eigen et al. [56] 34.1

Lin et al. [32] 40.6 He et al. [24] 40.1
Zhao et al. [34] 45.2 Lin et al. [28] 47.0
Lin et al. [28] 46.5 Lin et al. [35] 47.7

SCN (ResNet-101) 48.3
SCN (ResNet-152) 49.6

segmentation network in place of RGB images. The trained
network is tested on the HHA images for segmentation score
map, which is combined with the score map computed by
the network trained on RGB images. Using this combination
strategy, the previous best result is 47.7 achieved by Lin et

al. [35]. Compared to the network in, we find that using both
RGB and HHA images improves the segmentation accuracy.

We also use RGB and HHA images as training and testing
data. Based on ResNet-101, our SCN achieves the score of
48.3. This score is better than the results reported in [28], [35],
where the deeper ResNet-152 architecture is used. We further
employ the ResNet-152 to construct our SCN, which enhances
the segmentation score to 49.6. This result is better than state-
of-the-art methods by about 2%. It demonstrates that our SCN
can use different networks to improve the segmentation result
in general. The network proposed by Lin et al. [35] also uses
super-pixels and depth to construct context representations.
Nonetheless, the switchable information propagation is not
developed in [35]. In Fig. 5, we show the visual improve-
ment against over state-of-the-art network of [28]. We also
remove the local structural information propagation and top-
down switchable propagation from the full model, resulting
in 4.2% performance drop. By adaptively using the depth and
super-pixel information, our method substantially reduces the
segmentation error in image regions.
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(a) Image (b) Ground-truth (c) CFN (d) SCN

Fig. 6. A sample of the comparison to the state-of-the-art model [35] and our SCN. The images are selected from SUN-RGBD [21] dataset.

TABLE VIII
ABLATION EXPERIMENT ON LOCAL STRUCTURE AND TOP-DOWN

SWITCHABLE INFORMATION PROPAGATION. THE RESULTS ARE
EVALUATED ON THE SUN-RGBD TEST SET.

super-pixel depth method mean IoU

no no Noh et al. [44] 43.8
Chen et al. [39] 44.2

no yes Lin et al. [29] 44.5

yes no
expansion 45.3

compression 47.6
Lin et al. [35] 46.2

yes yes SCN 49.5

B. Experiments on SUN-RGBD Dataset

We also evaluate our method on the SUN-RGBD dataset
[21] as well, which contains 10,335 images labeled with 37
classes. Compared to the NYUDv2 [38] dataset, the SUN-
RGBD [21] dataset has more complex scene and depth con-
ditions, which are probably more suitable to measure the
generality of our method. From this dataset, we select 5,285
images for training and the rest for testing.

TABLE IX
COMPARISONS WITH OTHER STATE-OF-THE-ART METHODS ON THE

SUN-RGBD TEST SET. EACH SEGMENTATION ACCURACY IS REPORTED
IN TERMS OF MEAN IOU (%).

RGB-input mean IoU RGB-D-input mean IoU
Noh et al. [44] 22.6
Long et al. [23] 24.1
Chen et al. [39] 27.4 Long et al. [23] 35.1

Kendall et al. [55] 30.7 Hazirbas et al. [57] 37.8
Lin et al. [32] 42.3 Lin et al. [28] 47.3
Lin et al. [28] 45.9 Lin et al. [35] 48.1

SCN (ResNet-101) 49.5
SCN (ResNet-152) 50.7

In Table VIII, we experiment with different methods of
using the super-pixel and depth information. By using the
super-pixel and depth information, we equip SCN with the
local structural and top-down switchable information prop-
agation to tackle the complicated scene structure, achieving
better result than the compared approaches. We further report
the performances of our SCN and state-of-the-art methods in
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Table IX. In this experiment, we again compare our SCN with
the methods that take both RGB and HHA images as input.
The previous best performance on the SUN-RGBD dataset is
produced by the method of Lin et al. [35]. We note that the
model there is based on the ResNet-152 architecture. Thanks
to the better handling of the information propagation, we can
use the simpler ResNet-101 architecture to achieve better result
than that of Lin et al. [35]. With a deeper ResNet-152, we
obtain the segmentation accuracy of 50.7, which outperforms
all the compared methods. The visualization results of our
SCN on SUN-RGBD [21] dataset can be viewed in Fig. 6.

VIII. CONCLUSION AND FUTURE WORK

The convolutional neural networks (CNN), which are
trained on large-scale image data, have been quite helpful in
semantic segmentation. In this paper, we show that the training
of segmentation network can further benefit from the depth
data. We present a switchable context network that is trained
with the consistent guidance of super-pixels and the depth. Our
network uses super-pixels to provide spatially-variant infor-
mation propagation, which augment the relationship between
image regions in the context representations. In addition, our
SCN takes advantage of the depth data for network branching,
which adaptively selects useful contextual information for
image regions that have different object co-existences. With
intensive studies and careful comparisons, we demonstrate that
our SCN outperforms state-of-the-art methods on two public
datasets by about 2% segmentation accuracy.

On the other hand, our SCN uses the structured edge
detection toolbox [37] to generate super-pixels. This process,
however, heavily relies on the low-level image features, e.g.,
pixel values and gradients. In low-contrast input images that do
not show obvious structure, the super-pixels may not separate
objects accurately. In the future, we plan to make the gener-
ation of super-pixels sensitive to the semantic segmentation
results. It would hopefully provide an adaptive way to adjust
the super-pixels to further minimize the segmentation error.
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