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Abstract— Fine-grained recognition emphasizes the identifica-
tion of subtle differences among object categories given objects
that appear in different shapes and poses. These variances
should be reduced for reliable recognition. We propose a
fine-grained recognition system that incorporates localization,
segmentation, alignment, and classification in a unified deep
neural network. The input to the classification module includes
functions that enable backward-propagation (BP) in constructing
the solver. Our major contribution is to propose a valve linkage
function (VLF) for BP chaining and form our deep localization,
segmentation, alignment, and classification (LSAC) system. The
VLF can adaptively compromise errors of classification and
alignment when training the LSAC model. It in turn helps
to update the localization and segmentation. We evaluate our
framework on two widely used fine-grained object data sets. The
performance confirms the effectiveness of our LSAC system.

Index Terms— Convolutional neural network (CNN), fine-
grained recognition, object detection, pose alignment, semantic
segmentation.

I. INTRODUCTION

F INE-GRAINED object recognition aims to identify sub-
category object classes. It is used to find subtle differences

among animals [1]–[3], product brands [4], [5], and architec-
tural styles [6]. Recognition systems [7]–[18] make use of
deep convolutional neural networks (CNNs) [19]–[22] and in
general perform well.

CNN’s flexibility provides fine-grained recognition, while
having much room to improve. A key challenge is that discrim-
inative patterns (e.g., a bird head in bird species recognition)
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Fig. 1. One-way procedure from localization to template alignment makes
each module rely on results from the previous one. BP highlighted by a dashed
arrow makes it possible to refine the localization according to the classification
and alignment results in the training phase, forming a bidirectional refinement
process.

can appear in different locations and with rotation and scaling
in the collected images. Although the research of [23], [24]
has shown that CNN features are reasonably robust in scale
and rotation variation, it is better to directly capture changes of
poses to increase the recognition accuracy [7], [8], [25]–[29].
Existing solutions [7], [8], [10], [30] perform localization and
alignment to reduce pose variance. This procedure is illustrated
in Fig. 1 using solid arrows where parts are localized, aligned
according to templates, and then fed into the classification
neural network. Because all steps are processed independently
and consecutively, any error arising during localization can
influence alignment and classification.

Previously, we proposed a feedback-control framework [31]
to backpropagate alignment and classification errors to local-
ization to optimally update all states in iterations. This process
is highlighted with dashed arrows in Fig. 1, which improves
the fine-grained classification performance in our experiments.
We further investigate the multistage cascade for fine-grained
recognition. Initially, the localization component provides box-
shaped areas. The bounding box inevitably includes irrelevant
background. While such background may provide context
that facilitates classification, such as a sea background might
strengthen the confidence of a gull’s presence, it may harm
the downstream alignment process.

In contrast to our previous work, in this article, we use the
segmentation subnetwork to provide the pixel-wise objectness
map and resolve the above problem. Here, the motivation
is to use the pixel-wise objectness map to eliminate the
adverse effect of the background reasonably well, conse-
quently improving alignment and classification. Furthermore,

2162-237X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 07,2020 at 03:16:57 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9324-800X
https://orcid.org/0000-0002-8428-288X
https://orcid.org/0000-0002-1503-0240
https://orcid.org/0000-0001-5451-7230


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Deep LSAC consists of the LSAC subnetworks. With the help of VLF, the alignment subnetwork outputs pose-aligned part images for classification
in the FP stage, while the classification and alignment errors are propagated back to the localization in the BP stage.

the pixel-wise objectness map represents the accurate shapes
of the object parts. Thus, we harness the useful shape infor-
mation to guide the network learning. The whole framework is
constructed as one deep neural network including localization,
segmentation, alignment, and classification (LSAC) tasks; see
the architecture in Fig. 2.

The difficulty of forming the unified neural network stems
from the special requirement of the classification input.
As shown in Fig. 1, the input to classification is an image after
alignment. It cannot achieve the backward-propagation (BP)
chain during training because the derivative of a constant,
which is the aligned region, is zero. It means that the up-stream
subnetworks miss the opportunity to update the network
parameters. To avail an end-to-end network with all modules,
we make three contributions to satisfy the conditions: 1) the
input to the classification network is an aligned image; and
2) the gradients from the classification network can be back-
propagated to better update the upstream networks.

A. Valve Linkage Function

We propose a differentiable valve linkage function (VLF)
to form the alignment subnetwork. In our deep network, VLF
plays a pivotal part in connecting the localization, segmenta-
tion, and classification modules of our deep LSAC network.
VLF allows the pose-aligned part image to be directly passed
into the classification network. In BP, VLF plays as a function
containing necessary parameters for updating the localization
and segmentation subnetworks. If alignment is good enough
in the forward-propagation (FP) stage, VLF correspondingly
guarantees an accurate classification. Otherwise, errors prop-
agated from classification finely tune the localization and
segmentation modules to improve the reliability of alignment.
These effects cause the whole network to reach a stable state.

B. Localization-Segmentation Subnetwork

We use a localization-segmentation subnetwork to simul-
taneously regress a part-level location and object-level con-

fidence map. As shown in Fig. 2, localization and segmen-
tation share base CNN parameters. Different from methods
[31]–[33] using separate segmentation and part-localization
modules, our approach captures a relatively stable rela-
tionship between a fine-grained object (e.g., a bird) and
part regions (e.g., bird heads and torsos). In addition,
good localization and segmentation information forms a
shape prior to guide part alignment. Some cluttered back-
ground can be filtered out thanks to the object-segmentation
mask.

C. Multitemplate Alignment Subnetwork

Finally, we contribute an alignment subnetwork based on
the localization and segmentation results. This subnetwork is
equipped with a multitemplate selection to reduce the pose
variance for the classification task. As illustrated in Fig. 2,
the alignment subnetwork selects the best template and the
associated binary mask, which are used for matching the
shape of the part in the image. This is done by minimizing
the cost of matching the shapes of the template and the part.
Here, we use the segmentation result (i.e., the objectness map)
to remove the background image region, thus eliminating the
effect of the irrelevant background on matching the shapes.
It allows our joint modeling LSAC perform better than other
methods that neglect the rich shape information of object
templates.

We summarize the major contributions of this article as:
1) We propose VLF to connect the LSAC components as

a unified network. During the learning stage, VLF can
reasonably control the BP signal to better coordinate the
training of all network components.

2) We present a new feature of the localization-
segmentation component by sharing CNN parameters.
This component effectively learns the shape informa-
tion of the object to improve the alignment of object
parts.
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3) We use a flexible strategy of multitemplate selection
to reduce the pose variance of the object parts. This
strategy remarkably improves the classification accuracy.

In Section II, we revisit related work on fine-grained
recognition. In Sections III–V, we elaborate on our deep
LSAC model and its implementation details. In Section VI,
we study our deep LSAC model by conducting ablation studies
and comparison experiments. We provide our conclusions in
Section VII.

II. RELATED WORK

Unlike generic object classification [34], [35], subordinate
categories (e.g., gull and sparrow) are the recognition targets in
fine-grained tasks. We review recognition systems to discover
the subtle distinctions among subordinate categories.

A. Holistic Representation

Early work focused on constructing discriminative whole-
image representation [1]–[3]. Fine-grained data sets were
proposed in [1] and [2]. The methods are based on the
traditional pipeline of global feature construction and
classification [36]–[38]. In [3], localization was exploited to
find object parts for identification of dog breeds. This module
was designed for dog faces only. Other parts (e.g., torso and
tail) were not considered.

B. Pose Normalization

To recognize subtle part differences, later work used local-
ization and alignment, which extract semantic parts from
visually similar regions to reduce their variance, yielding pose-
normalized representation.

Farrell et al. [39] used part templates to obtain a loca-
tion. The templates were predefined (e.g., a bird head and
torso) to use part annotations during training. The relationship
among parts was not modeled. Zhang et al. [40] adapted the
deformable part model [41], [42] to extract part regions and
features as image representation. Similarly, Yao et al. [43]
and Yang et al. [44] learned part models to localize important
parts for fine-grained objects. The models were trained in data-
driven ways to mine discriminative parts.

Fine-grained recognition benefits from the correspondence
offered by localization. However, the localization operation
does not consider rotation [39], [40], [43], [44]. Therefore,
alignment is invoked as a complement. Gavves et al. [45]
aligned the whole object to accommodate possibly large vari-
ation of poses. The alignment was accomplished by matching
histograms of gradients (HOGs) [46] and fitting elliptical
shapes. Berg and Belhumeur [47] proposed a part-based one-
vs-one feature (POOF), where objects were divided into differ-
ent groups for alignment. Xie et al. [48] performed hierarchical
alignment, where small parts were aligned independently and
assembled later for further processing. The methods of [47],
[48] showed flexibility to handle pose variance.

Segmentation and localization were unified in [33], [49],
and [9]. In these studies, the hand-designed prior plays
an important role in modeling the relationship between
objects and parts, which simultaneously benefits object-level
segmentation and part-level localization. There have been
several works [27], [50], [51] that depended on the deep
neural networks to localize and segment the object parts.
Simon et al. [50] employed the activation values of the
convolutional feature maps to localize the discriminative

part regions, where they extracted useful information to
assist the classification task. Zheng et al. [27] built the
hierarchical network architecture to capture the local and
global relationship between object parts. Furthermore,
Zheng et al. [51] employed the nonlocal attention model to
localize the object, which is associated with the parts. The
nonlocal attention model provides the pixel-level mask to
lessen the distractions of the background.

Although localization, segmentation, and alignment were
used to produce pose-normalized representation for fine-
grained recognition [33], [39], [40], [47]–[49], [52], they
worked without feedback. We introduce the end-to-end train-
ing of all modules and improve the classification performance.

C. Fine-Grained Recognition With CNN

Deep CNN has been used to achieve fine-grained recogni-
tion. It has been successfully applied to fundamental recog-
nition tasks, such as image classification [19], [53], object
detection [54]–[58], and semantic segmentation [59], [60].
CNN provides transferable knowledge by means of pre-
training on large-scale image data [34], benefiting various
vision tasks. Research into the use of a pretrained CNN
[19], [20] in fine-grained recognition has produced compelling
results.

CNN has been applied to part representation learning
[7], [8], [40]. Zhang et al. [8] used selective search [61]
for part proposals. Branson et al. [7] studied higher order
geometric warping to align parts. Fine-tuned CNN models
[19], [20] extracted representation on parts [7], [8]. Apart
from learning representation, methods [10], [30] applied
CNN to learn explicit part-based models for localization. Part
localization and classification were integrated to allow end-to-
end training. The localized parts in [10], [30], [62] increase
semantic information of mid-level CNN features. In [9] and
[63]–[67], an implicit part model is applied to eliminate the
requirement of part annotations. Krause et al. [9] resorted
to cosegmentation [68], [69] to discover semantic parts.
Simon et al. [64], Lin et al. [63], and Kong et al. [66]
selected meaningful network activations that capture the
part information. He et al. [28], Zheng et al., [27] and
Yan et al. [29] employ the deep attention network to detect
object parts. Krause et al. [67] investigated the use of abundant
cost-effective data to replace expensive part annotations. They
made remarkable improvements over fine-grained recognition.
Jaderberg et al. [65] proposed a network to account for the
spatial transformation for flexible localization of parts.

As a vital component to reduce the pose variance, alignment
must be jointly modeled with other CNN-based components,
for which the aforementioned methods have not considered
yet. Furthermore, the existing methods perform the LSAC
on high-level convolutional feature maps. Due to the stacked
down-sample operations, the high-level feature maps are lack
of the visual details, which are important for fine-grained
recognition. In our framework, the alignment takes part in
the end-to-end training of CNN and helps update the whole
framework. Compared to previous works, our LSAC model
enables the joint update of the low- and high-level information.
It learns the high-level features for localization and segmen-
tation. Then the localization and segmentation results assist
the alignment manipulation on the image, selecting the useful
low-level image information to refine the high-level features
for better classification.
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TABLE I

LIST OF SYMBOLS WITH DESCRIPTIONS

III. DEEP LSAC MODEL

To recognize fine-grained classes, we learn deep LSAC
models for distinct and meaningful parts. Features extracted
from parts are used in classical classifiers, such as support
vector machine (SVM). The main framework consists of four
major tasks: 1) the localization module that provides part
positions; 2) the segmentation module that yields the pixel-
wise object region; 3) the template alignment that offsets
translation, scaling, and rotation for pose-aligned parts; and
4) the final classification module, which takes its inputs from
the previous task.

As mentioned above, the way to connect these four mod-
ules in a unified deep neural network is nontrivial. Below,
we describe localization and segmentation, which share the
same set of CNN parameters. Then we detail our alignment
subnetwork, where FP and BP stages are implemented. For
the convenient reference, we summarize the critical notations
with their indications in Table I.

A. Localization-Segmentation Subnetwork

1) Localization: The localization module outputs the coor-
dinates for the top-left and bottom-right bounding-box corners
denoted as (x1, y1) and (x2, y2), given an input natural image
for fine-grained recognition. In the training phase, we regress
bounding boxes of part regions. Ground-truth bounding boxes
are generated with part annotation. We unify input image
resolution and construct a localization module based on CNN.
The localization network includes the learnable parameters W l
and a predicted bounding-box L.

Given the input image I ∈ R
h×w×3 and the bounding-box

L = (x1, y1, x2, y2), we express the localization subnetwork
as

L = fl(W l; I). (1)

During training, the ground-truth location of parts Lgt is used.
The location objective function is given by

El
(
W l; I, Lgt

) = 1

2
|| fl(W l; I) − Lgt ||2. (2)

We minimize it over W l .

2) Segmentation: The segmentation module produces pixel-
wise scores for foreground objects and the background by
preforming two-class regression.

We let W s denote the learnable network parameters. Given a
pixel at location ci ∈ R

2, the segmentation network outputs the
probability P(oi |ci , W s) that predicts the pixel to have either
a foreground (oi = 1) or background (oi = 0) label. We are
given Npixel pixels, and each pixel at location ci is given the
ground-truth label ogt

i ∈ {0, 1}. During training, the parameters
are learned by minimizing the following objective function
with network parameters W s :

Es
(
W s; I, ogt

) = − 1

Npixel

∑
i

log P
(
oi = ogt

i |ci , W s
)
. (3)

In our scenario, we use segmentation to generate an object-
ness map O ∈ R

h×w, where

O(ci ) = P(oi = 1|ci , W s) (4)

predicts the probability of the pixel at location ci to have
a foreground label. A high probability means that the pixel
is located inside an object region. The objectness map is an
object-sensitive cue. It reduces the chance that the alignment
is applied to the background. Along with the localization
result, the objectness map can be used to refine the alignment.
We provide more details in Section III-C below.

3) Parameter Sharing: Our localization and segmentation
components account for two tasks–localization provides part
regions, and segmentation regresses the whole object. Appear-
ances of objects and part regions are generally stable in fine-
grained tasks. The context can be used to benefit both tasks.
Thus, we integrate part localization and object segmentation
to capture their underlying correlation.

We tackle the joint localization-segmentation task by shar-
ing parameters of CNN. We place the regression output of
localization and segmentation at the end of the network. That
is, the localization and segmentation share the base layers,
that is, conv1_1 to f c7. The feature generated from the base
layers is embedded by an extra fully connected layer to the part
coordinates. The base feature is processed by convolutional
manipulation to yield pixel-wise scores.

We let W ls denote the parameters of the localization-
segmentation subnetwork. With (2) and (3), we formulate the
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training objective of localization-segmentation as

Els
(
W ls; I, Lgt , ogt

)
= 1

2
|| fl(W ls; I)−Lgt ||2− 1

Npixel

∑
i

log P
(
oi = ogt

i |ci , W ls
)

(5)

for which an implicit weight of 1 is used to balance between
the localization and segmentation losses. We will show next
that joint localization-segmentation yields superior perfor-
mance compared to performing them independently.

B. Classification Subnetwork

The classification subnetwork is the last module shown
in Fig. 2. Our classification takes the pose-aligned part image
as input, denoted as I∗ ∈ R

h×w×3, and generates the category
label. This classification CNN [19] is expressed as

y = fc
(
W c; I∗) (6)

where W c is the weight parameter set in this subnetwork. The
output is the category label y ∈ R.

During training, the ground-truth label ygt is provided.
We use the probability P(y|I∗, W c) to predict the pose-
aligned part image I∗ to have the category y. The predicted
category y should be consistent with ygt . We enforce a penalty
on y by following [19], which is denoted as:

Ec
(
W c; I∗, ygt

) = − log P
(
y = ygt |I∗, W c

)
. (7)

Our major contribution in this system is the construction of
the alignment subnetwork, which is detailed below together
with the formulation of I∗ in (6).

C. Alignment Subnetwork

The alignment subnetwork receives part location L (i.e.,
the bounding box) from the localization module and the object-
ness map O (i.e., the pixel-wise foreground probabilities) from
the segmentation module. It then performs template alignment
[70] and feeds a pose-aligned part image to classification,
as shown in Fig. 2. Our alignment offsets translation, scaling,
and rotation for pose-aligned part region generation, which is
important for accurate classification. Apart from pose aligning,
this subnetwork plays a crucial role in bridging the BP
stage of LSAC model, which helps utilize the classification
and alignment results to refine the localization-segmentation
subnetwork.

We propose a new VLF as the output of the alignment
subnetwork to accomplish the above goals. In what follows,
we present our alignment part and then detail our VLF in line
with the FP and BP stages of the LSAC model.

Template Alignment: We rectify the localized part regions,
making their poses close to the templates. We define a function
to evaluate the pose similarity between a pair of uniform-
size part regions Ri , R j ∈ R

h×w×3. To reduce illumination
variance, we normalize the pixel values of each part region.
We quantize the range of pixel values into 256 bins, and,
respectively, compute the distributions, i.e., pi , p j ∈ R

256,
of gray-scale values of the part regions Ri and R j . The
normalization of the gray-scale values and the calculation of
the distribution follow the construction of the normalized color
histogram. As Ri and R j have the equal sizes, every two
pixels having the same location of Ri and R j form a pair
of gray-scale values. Using all the tuples, we calculate the

Fig. 3. Examples of (a) bird heads and (b) torsos. The alignment templates
selected by the clustering algorithm are presented in the first columns of
(a) and (b).

Fig. 4. Alignment subnetwork selects pose-aligned parts for classification.
The solid arrows indicate the inputs passed forward. The dash arrows indicate
the back-propagated gradients. In FP stage, the alignment subnetwork takes
input as an image and the associated localization-segmentation results. In BP
stage, it computes the gradients with respect to the localization-segmentation
results.

joint distribution of gray-scale values of Ri and R j , which is
denoted as pi j ∈ R

256×256. With the distributions pi , p j , and
pi j , we define the similarity function as

S
(

Ri , R j
) =

256∑
m=1

256∑
n=1

pi j(m, n)log

(
pi j(m, n)

pi(m) p j (n)

)
. (8)

We note that this similarity function is based on mutual
information [70]. A large value means similar poses between
Ri and R j .

To minimize large pose variation, we generate a template
set for alignment. For each pair in N training part images,
we calculate the similarity using (8) and finally form a sim-
ilarity matrix St ∈ R

N×N . St is then processed with spectral
clustering [71] to split the N images into K clusters. For each
cluster, we select the part region closest to the cluster center
as template. To include mirrored poses, we flip each template.
Eventually, we obtain a template set T. Examples of bird heads
and torsos are shown in Fig. 3.

Fig. 4 shows the pipeline of alignment. Given an input
image I , we assume that the pose-aligned part region has
center location c, rotated by θ degree and scaled by factor α.
To compare it with a template t , we extract the region from
image I , denoted as I(c, θ, α). Apart from applying the sim-
ilarity function (8), we make the regressed-part bounding box
L, generated by the localization module, and a regularization
is then defined as

D(c, L) = exp

(
−‖c − cr (L)‖2

2σ 2

)
(9)
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Fig. 5. Illustration to measure the foreground confidence of aligned parts.
We register the binary mask to the objectness map with zero padding.

where σ is a constant set to 15 empirically. cr (L) =
(x1 + x2/2, y1 + y2/2) represents the center of the bounding
box L. Using (9), we adjust the aligning center c according
to the regressed center cr (L) of parts. This makes alignment
more reliable.

The similarity measurement of (8) is defined in terms of
the distributions of pixel values, which offers little critical
shape information of the object. By knowing the shape of the
foreground object, the influence of a cluttered background can
be reduced when we align the part region with the template.
To this end, we measure the objectness confidence of the
aligned part, which is covered by the template. Fig. 5 illustrates
this process. We are given the binary mask tm along with
the template t . We use the ground-truth data to generate the
binary mask tm . tm(ci) ∈ {0, 1} indicates that the pixel ci

belongs to the background or foreground. Given a pixel ci ,
we denote O f (ci ) and Ob(ci) as foreground and background
scores, which are computed by the objectness probability as

O f (ci) = − log(1 − O(ci )), Ob(ci ) = − log O(ci). (10)

A high foreground/background score means the pixel is located
inside the foreground/background region. Assume tm has a
total of Npixel pixels, including N f foreground and Nb back-
ground pixels. We define the objectness confidence as

F(O, tm) = 1

N f

Npixel∑
i=1

O f (ci )tm(ci )

+ 1

Nb

Npixel∑
i=1

Ob(ci)(1 − tm(ci)). (11)

We note that the binary mask tm is registered to the image
with zero padding. The confidence output by (11) encourages
a part region with a high foreground probability to be located
in the foreground region of the template, while suppressing the
background region of the template that overlaps with the part
region. With the guidance of objectness confidence, the part
region can be better aligned with the template that has a similar
shape.

Using (8), (9), and (11), we formulate the alignment process
as finding the values of c, θ , α, and t that maximize

Ea(c, θ, α, t; I, L, O)

= λa S(I(c, θ, α), t) + λd D(c, L) + λs F(O, tm)

c ∈ [x1, x2] × [y1, y2], θ ∈ �, α ∈ A, t ∈ T (12)

where λa , λd , and λs are constants set to 1, 0.001, and 0.0003,
respectively. �, A, and T define the ranges of parameters. The
ranges of parameters defined in (12) are used by searching
in the FP stage of the network to determine the parameters
c, θ , α, and t. A large alignment energy output by (12)

indicates reliable alignment. Maximizing the alignment energy
is achieved by searching the quantized parameter space.

IV. VALVE LINKAGE FUNCTION

We now detail the VLF, which is important to link the
subnetworks and make them work as a whole in the training
phase.

We denote the pose-aligned part as I(c∗, θ∗, α∗) ∈ R
h×w×3.

In the FP stage, the outputs of the localization-segmentation
subnetwork are represented as L f ∈ R

4 and O f ∈ R
h×w. Our

VLF is defined as

V
(
L, O; I, L f , O f

)
= Ea(c∗, θ∗, α∗, t∗; I, L, O)

Ea
(
c∗, θ∗, α∗, t∗; I, L f , O f

) I
(
c∗, θ∗, α∗) (13)

where{
c∗, θ∗, α∗, t∗}
= arg max

c,θ,α,t
Ea

(
c, θ, α, t; I, L f , O f

)
s.t. c ∈ [x1, x2] × [y1, y2], θ ∈ �, α ∈ A, t ∈ T. (14)

The VLF comprises three critical terms: 1) the function of
alignment energy Ea(c∗, θ∗, α∗, t∗; I, L, O); 2) the alignment
energy Ea(c∗, θ∗, α∗, t∗; I, L f , O f ) ∈ R that is computed by
the forward-propagated part localization L f and objectness
map O f ; and 3) the pose-aligned part I(c∗, θ∗, α∗).

Our VLF satisfies the end-to-end training of the clas-
sification and localization-segmentation subnetwork. This is
because our VLF allows the pose-aligned part to be directly
fed into the classification subnetwork in FP, while passing the
back-propagated gradients from the classification subnetwork
to update the localization-segmentation subnetwork in BP. The
role of VLF in FP and BP is discussed below.

A. FP Stage

In the FP stage, the alignment subnetwork receives part
location L f and objectness score map O f . As in (13),
the function of alignment energy and the forward-propagated
energy are in a ratio form, which always results in a factor
of 1 after the FP stage. It makes the output of VLF

V
(
L f , O f ; I, L f , O f

) = I
(
c∗, θ∗, α∗) (15)

which is exactly the pose-aligned part. We note the ratio form
allows the pose-aligned part to be the input of the classification
subnetwork without changing the pixel values by a nonidentity
transformation.

B. BP Stage

In (13), the VLF preserves the function of alignment energy,
for which the variables of part location and objectness score
map can be regarded as inputs. It enables updating of the signal
of classification to be passed to the localization-segmentation
subnetwork using the chain rule, as shown in Fig. 4.

In the BP stage, the output of the alignment subnetwork
V (L, O; I, L f , O f ) becomes a function of L and O. There-
fore, the objective function of LSAC is formulated as

J
(
W c, W ls; I, Lgt , ygt , ogt

)
= Ec

(
W c;V

(
L, O; I, L f , O f

)
, ygt

)+Els
(
W ls; I, Lgt , ogt

)
.

(16)

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on November 07,2020 at 03:16:57 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: DEEP LSAC FOR FINE-GRAINED RECOGNITION 7

This training objective balances the loss Ec for the classifi-
cation subnetwork and Els for the localization-segmentation
subnetwork, where W c and W ls are the network parameters
to be determined. The losses output by Ec and Els are
balanced by a factor of 1 during training. We minimize this
objective function for updating localization-segmentation and
classification subnetworks during training.

To update the classification subnetwork, we compute the
gradients of J with respect to W c. To update the localization-
segmentation subnetwork, gradients with respect to W ls are
computed as

∇W ls J = ∂ Els

∂W ls
+ ∂ Ec

∂W ls
(17)

where Els and Ec, respectively, denote the training objectives
of the localization-segmentation and classification subnet-
works. The term ∂ Els/∂W ls represents the BP stage within
localization-segmentation.

The second term of (17) can be expanded as

∂ Ec

∂W ls
= ∂ Ec

∂V

(
∂V

∂ L
∂ L

∂W ls
+ ∂V

∂ O
∂ O

∂W ls

)
(18)

where V is short for V (L, O; I, L f , O f ). As shown in Fig. 4,
∂ Ec/∂V passes useful information in the BP stages within
classification. It is computed by back-propagated the gradient
to the input image of classification subnetwork. It is noted that
the alignment subnetwork does not have learnable parameters.
Thus, we directly back-propagate the gradient ∂ Ec/∂V to
update the localization-segmentation subnetwork.

In 18, the gradients ∂ L/∂W ls and ∂ O/∂W ls are used to
update the localization-segmentation network following con-
ventional box [54], [55], [72] and pixel-wise mask [59], [60]
regression. With the chain rule, the valve function V connects
the classification and localization-segmentation subnetwork in
the BP stage. As illustrated in Fig. 4, this connection is
represented by ∂V /∂ L and ∂V /∂ O in (18). With it, the update
of the localization-segmentation subnetwork is sensitive to the
back-propagated signal of the classification subnetwork.

Furthermore, the signal communicated between the clas-
sification and localization-segmentation subnetworks can be
adaptively tuned by the VLF. In the BP stage, the valve
function V can be rewritten as

V
(
L, O; I, L f , O f

)
= 1

e
Ea

(
c∗, θ∗, α∗, t∗; I, L, O

)
I
(
c∗, θ∗, α∗) (19)

where e = Ea(c∗, θ∗, α∗, t∗; I, L f , O f ) is the alignment
energy computed in the FP stage. This forward-propagated
alignment energy is applied in the adaptive update for local-
ization and segmentation.

C. Adaptive Update for Localization

We show that VLF provides information from the classifi-
cation subnetwork and adaptively control the update in terms
of the localization task.

As in (19), the forward-propagated alignment energy is
regarded as a constant in the BP stage. With this energy,
the linkage part ∂V /∂ L can be expressed as

∂V

∂ L
= 1

e
I
(
c∗, θ∗, α∗)∂ Ea

∂ L
. (20)

And the term ∂ Ea/∂ L is extended to

∂ Ea

∂ L
= − λd

2σ 2
exp

(
−‖c − cr (L)‖2

2σ 2

)
∂‖c − cr (L)‖2

∂ L
(21)

where c = (cx , cy) and we have

∂‖c − cr (L)‖2

∂ L
= (

2cx −x1−x2, 2cy −y1−y2, 2cx −x1−x2, 2cy −y1−y2
)
.

(22)

Here, the factor 1/e can be deemed to be a valve con-
trolling the influence from classification. As described in
Section III-C, a larger alignment energy e corresponds to
better alignment in the FP stage. In the BP stage, 1/e is used
to reweight the update signal ∂ Ec/∂V from the classification
network. It functions as a compromise between classification
and alignment errors.

In this case, a large e means good alignment in the BP stage,
for which information from the classification subnetwork is
automatically reduced given a small 1/e. In contrast, if e is
small, current alignment becomes less reliable. Thus more
classification information is automatically introduced by the
large 1/e to guide W ls update for localization. Simply put,
one can understand 1/e as a dynamic learning rate in the BP
stage. It is adaptive to matching performance.

D. Adaptive Update for Segmentation

Similar to (20), the linkage part for segmentation output
∂V /∂ O in (18) can be written as

∂V

∂ O
= 1

e
I
(
c∗, θ∗, α∗)∂ Ea

∂ O
. (23)

The partial derivative ∂ Ea/∂ O can be expressed by element-
wise expansion as

∂ Ea

∂ O(ci)
= λs tm(ci)

(1 − O(ci ))N f
− λs(1 − tm(ci ))

O(ci)Nb
. (24)

Besides the adaptive factor 1/e, the update of segmentation
is also guided by the template tm , as formulated in (24).
With the definition of (24), the template where tm(ci ) = 1
allows the signal ∂ Ea/∂ O(ci ) = λs/(1 − O(ci))N f to
supervise the segmentation. On the other hand, the signal
becomes ∂ Ea/∂ O(ci) = −λs/O(ci )Nb where tm(ci) = 0.
It means that the control signals can be flexibly switched
according to the foreground/background region of the
template. Using the template to guide BP shares the spirit with
the methods of [73], [74]. As the template mask matched with
the part region becomes available, the network is supervised
not only by the object region that reduces global segmentation
error, but also by the template shape information that rectifies
object boundaries. Fig. 6 shows the alignment results from the
final LSAC model. With the shape information provided by
the segmentation subnetwork, we reduce the distraction of the
background pixels and improve the quality of alignment. The
comparison in Fig. 7 demonstrates that including additional
shape information improves the segmentation results.

With this kind of auto-adjustment mechanism in our
VLF connecting classification and alignment, the localization-
segmentation subnetwork can be refined in the BP stage.
We verify this design in experiments.
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Fig. 6. Images and alignment of the head parts (a) and the torso parts (b). We show the alignment results without/with using the segmentation subnetwork.

Fig. 7. (a) Input image. (b) Segmentation ground-truth. The results are
achieved by (c) segmentation branch without parameter sharing, (d) segmen-
tation branch without VLF, and (e) segmentation branch of LSAC.

V. IMPLEMENTATION DETAILS

A. CNN Construction

In implementation, we modify the Caffe platform [75]
for CNN construction. Bird heads and torsos are consid-
ered as semantic parts. We train two deep LSACs for
them, respectively. All CNN models are fine-tuned based on
Visual Geometry Group (VGG)-16 [20]. In the localization-
segmentation subnetwork, all input images are resized to
224 × 224. We remove the original 1000-way fully connected
layer. The network is transformed to a fully convolutional
network (FCN) following [59]. The fully connected layers,
that is, f c6 and f c7, are now convolutional layers. This
module outputs a structure that comprises 4-way regression
for part-bounding boxes and a pixel-wise probability map
for foreground/background labels. The pretrained model on
ImageNet is used to initialize our localization-segmentation
subnetwork. The classification subnetwork takes input images
each with size 224×224. The first fully connected layer f c6 is
extracted to form a 4096D feature. Then we follow the CNN-
SVM scheme [76] to train an SVM classifier on our CNN
feature.

B. Template Alignment

For alignment, in template selection, all 5994 part
annotations for head or torso in the training set of the
Caltech-University of California San Diego (UCSD)

TABLE II

AVERAGE TIME CONSUMPTIONS OF SUBNETWORKS. THE TIME CON-
SUMPTION IS REPORTED IN TERMS OF MILLISECOND (ms)

Bird-200-2011 data set [1] are used. The 5994 parts are
cropped and resized to 224 × 224. Using spectral clustering,
we obtain the 5994-part split into 30 clusters. From each
cluster, we select the part region closest to the cluster center
and its mirrored version as two templates. This process
eventually forms 60-template T. The rotation degree θ is an
integer. Its range is � = [−60, 60] with an interval of 10◦.
We search the scale α within A. As all the input images
and templates are resized to 224 × 224, a part in an image
is smaller than any template. We must scale up an input
image to match the sizes of a part and a template. To this
end, we set A = {1.5, 2.7, 4.0, 7.7, 15.0} for the head, and
A = {1.2, 1.4, 2.0, 2.5, 3.0} for the torso.

The searching spaces in terms of the template, rotation
degree, and scales are tuned by respecting the performance
on the validation set, which comprises 1000 images randomly
selected from the training set. By broadening the searching
spaces, we find negligible improvement but extra computa-
tional overhead. Thus, we continue to use the searching spaces
throughout all experiments. We remark that the results of the
pose-similarity function [see (8)] can be precomputed and
stored. We use Nvidia TITAN X Pascal graphics card with
3840 cores and 12 GB memory for acceleration. It takes about
5 s/image to accomplish the computation of pose similarity
over all possible locations, templates, scales, and rotation
degrees. Thus, the pose similarity can be quickly looked up
in FP stage. By using VGG-16 architecture, our implemen-
tation enables 15 ms/image training and 8 ms/image testing
time. In Table II, we report the average training and testing
times for an image in different network components (i.e.,
LSAC subnetworks). By sharing the network parameters of the
localization and segmentation subnetworks, we save the GPU
memory for storing the parameters, leading to a more compact
network. Compared to using the independent localization and
segmentation subnetworks, we save 26% of the training time
for achieving the converged network parameters.

VI. EXPERIMENTS

We evaluate our method on three data sets: 1) Caltech-
UCSD Bird (CUB)-200-2011 [1]; 2) CUB-200-2010 [2]; and
3) Stanford Cars-196 [5]. The CUB-200-2011 data set is more
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TABLE III

OBJECT SEGMENTATION ACCURACY (%) ON THE CUB-200-2011 DATA
SET USING DIFFERENT METHODS. THE ABBREVIATIONS “BG” AND

“FG” REFER TO THE BACKGROUND AND

FOREGROUND, RESPECTIVELY

widely used for analysis. We thus conduct our major evaluation
on that data set, while using the other two data sets for
extensive comparison with state-of-the-art methods.

A. Caltech-UCSD Bird-200-2011 Data Set

We evaluate our method on the CUB-200-2011 data set [1].
This data set contains 11 788 images of birds, divided into
200 subordinate categories. Each image contains the species
along with the bird bounding box. Annotation of bird parts is
provided.

During training and testing, we use bounding boxes of the
data set to simplify classification, similar to previous work
[8], [33], [40], [45], [47], [77]. Our experiments follow the
training/testing split fixed in [1]. We define two kinds of
semantic templates, that is, “head” and “torso”, as in [8], [7],
and [31]. Because there is no such annotation, we follow the
method of [8], [10], [31] to obtain corresponding rectangles
covering annotated parts within bird heads and torsos.

1) Analysis of Parameter Sharing: Our localization and
segmentation share convolutional parameters to capture object-
part relationships. To investigate its efficacy, we build these
two components with independent CNNs, and compare their
performance with the sharing-parameter counterpart.

We evaluate the part localization performance based on
percentage of correctly localized parts (PCP) [8], which is
computed on the top-ranked part prediction and regards parts
with ≥0.5 overlap with ground-truth as correct. The indepen-
dent localization results are 93.2 and 94.3 for the head and
torso parts. By parameter sharing with segmentation, we obtain
better results 95.0 and 97.0.

In Table III, we analyze parameter sharing in terms of seg-
mentation performance. Following [35], we use intersection-
over-union (IoU) scores to evaluate the segmentation per-
formance. A mean IoU (mIoU) score is also computed to
evaluate the overall segmentation accuracy. The comparison
shows that parameter sharing generally improves segmentation
on background and foreground regions. The visual difference
between Fig. 7(c) and (e) is clear.

2) Analysis of VLF on Localization-Segmentation: To
further understand the importance of the localization-
segmentation module using our VLF, we move this subnetwork
out of the joint LSAC model and compare it with our overall
LSAC.

The comparison on localization accuracy is shown in Fig. 8.
We test the performance in terms of PCP with overlap ≥
0.5, 0.6, 0.7, and 0.8. In all configurations, the localiza-
tion branch (LOC) alone performs worse than applying the
whole LSAC model. The segmentation subnetwork also suf-
fers from performance degradation, as shown in Table III.
Fig. 7(d) shows the segmentation results. The issue is that
the localization-segmentation subnetwork does not receive

TABLE IV

COMPARISON WITH STATE-OF-THE-ART IN TERMS OF PART LOCALIZA-
TION ACCURACY (%) ON PART OVERLAP ≥ 0.5 WITH GROUND-TRUTH

ON THE CUB-200-2011 DATA SET

Fig. 8. PCPs of (a) bird head and (b) bird torso under different overlap
rates. “LSAC” and “LOC” refer to the LSAC model and localization branch,
respectively.

feedback from alignment and classification while our LSAC
updates all of them in each iteration.

3) Comparison With Other Localization Methods: To evalu-
ate part localization, we make comparisons with other methods
in Table IV. Previous methods [10], [31], [32], [41], [61],
[79] localize heads and torsos. We use VGG-16 architecture.
With the same experimental setup, we show the comparisons
in Table IV.

For the head and torso parts, our results are 95.0 and
97.0 compared to the previous best results of 93.4 [10] and
96.2 [31]. Fig. 9 shows a few examples, where (a) and
(b) involve predicted bounding boxes of bird heads and torsos.
Compared to our previous localization, alignment and classi-
fication (LAC) model [31], all-part localization is improved
by our new LSAC. In particular, head localization, which is
challenging due to small regions, is improved notably from
90.0 to 95.0. The performance gap suggests the importance of
our localization-segmentation subnetwork that captures object-
part relationships, which is beneficial to bounding box regres-
sion.

Next, we use ResNet-50 [21] as the backbone architecture
of LSAC, yielding better localization accuracies. We compare
our approach to other localization methods [80], [81], which
also use ResNet-50. We employ the released implementations
of these methods to output the image representations, which
are used for localizing the head and torso parts. As shown
in Table IV, our approach outperforms these methods.

4) Comparison to Other Segmentation Methods: Our LSAC
model includes segmentation. An alternative is to train a
baseline FCN [59] for object segmentation. Besides CNN-
based solutions, the interactive object segmentation tool
GrabCut [69] and cosegmentation method [82] can also be
used. We report the segmentation accuracy of these methods
in Table V.
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Fig. 9. Localization examples of bird heads (in red rectangles) and torsos
(in green rectangles).

TABLE V

COMPARISON WITH OTHER SEGMENTATION METHODS IN TERMS OF

OBJECT SEGMENTATION (%) ON THE CUB-200-2011 DATA SET

As shown in Table V, the baseline FCN yields a mean
IoU of 78.8 compared to our LSAC score of 84.5. The
performance degradation stems from the fact that the baseline
FCN does not benefit from parameter sharing. Also, this single
FCN is isolated from the end-to-end training of multiple
tasks that are included in our LSAC model. The non-CNN
methods, i.e., GrabCut [69] and cosegmentation method [82],
perform less accurately since they depend on low-level image
representation that loses semantic object information. Fig. 10
shows examples.

In Table V, we compare our approach to the latest meth-
ods [80], [81] that are based on ResNet-50. With a stronger
backbone model, the latest methods provide more powerful
image representations for the segmentation of objects. They
outperform the previous methods which are based on AlexNet
or VGGNet. Our approach also benefits from ResNet-50 and
outperforms the competitive methods, in terms of the segmen-
tation accuracies.

5) Sensitivities to Alignment Hyperparameters: The align-
ment energy function (see 9 and 12) has hyperparameters
{λa, σ, λd , λs} that control the importance of different sub-
networks. To examine the effect of individual subnetworks
on the alignment result, which is eventually related to the
classification accuracy, we compare different hyperparameters
and report classification accuracies in Fig. 11. To simplify the
comparison, we investigate each hyperparameter separately,
while fixing other parameters according to the baseline setting
{1, 15, 0.001, 0.0003}.

At first, we compare different values of λa [see Fig. 11(a)].
By setting λa to 0, we remove the similarity function between
the template and object part, yielding a large performance
drop. This case is very similar to using λs = 0 [see Fig. 11(d)]
that disables the objectness confidence, which also largely

Fig. 10. (a) Input image. (b) Segmentation ground-truth. The results
are achieved by (c) GrabCut, (d) cosegmentation, (e) baseline FCN, and
(f) segmentation branch of LSAC.

TABLE VI

CLASSIFICATION ACCURACY (%) OF SEMANTIC PARTS, I.E., HEAD

AND TORSO, ON THE CUB-200-2011 DATA SET. WE, RESPEC-
TIVELY, BLOCK LOCALIZATION AND ALIGNMENT SUBNETWORKS

TO EVALUATE PERFORMANCE

degrades the classification performance. It is noted that the
similarities and objectness confidences guide the alignment
according to texture and shape information, respectively. With-
out them, the alignment process is unreliable for the classifi-
cation subnetwork. We find that too large λa or λs reduces
the classification accuracy, because the alignment subnetwork
may become oversensitive to the problematic similarities and
objectness confidences.

Next, we study the localization regularization by controlling
hyperparameters σ and λd . With larger σ [see Fig. 11(b)],
the alignment process becomes less sensitive to localization
results. This is similar to use smaller λd that reduces the
impact of localization results. But larger λd reduces the effect
of similarity function and objectness confidence on alignment,
leading to the degradation of classification accuracy.

6) Subnetwork Combination Analysis: Our experimental
results confirm that LSAC with all three subnetworks is
powerful in part localization and object segmentation. We also
evaluate the performance in fine-grained classification and
experiment with removing one or two components in the
following five cases.

First, we remove the localization-segmentation subnetwork
by validating the classification accuracy on images. The results
are listed in the first row of Table VI. Without this module,
the whole-image classification accuracy is only 76.3.

Second, we remove the alignment subnetwork. The
localization-segmentation subnetwork is used to propose part
hypotheses for classification. In this case, the localization-
segmentation and classification modules are trained indepen-
dently in BP stages. The results in the second row of Table VI
indicate that lack of message propagation in alignment is not
recommended.

Third, we use VLF in the alignment subnetwork to output
pose-aligned parts for classification in the FP stage. But VLF is
disabled in the BP stage to prevent classification and alignment
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Fig. 11. Sensitivity to alignment hyperparameters. Classification accuracies are evaluated on the CUB-200-2011 data set.

errors from being propagated to localization and segmentation.
In this case, we boost the accuracy to 78.2 on bird heads (the
third row of Table VI). The alignment subnetwork, along with
FP and BP, is thus necessary.

Fourth, we enable VLF during forward and backward stages.
But the segmentation branch is removed so that the framework
degrades to our previous LAC [31] model, which consists
of the localization, alignment, and classification modules.
Without the segmentation branch, only localization results
are insufficient as reported in the fourth row of Table IV.
Unsurprisingly, this model configuration leads to performance
degradation in both head and torso classifications.

By replacing the whole image with the torso part, we find
a significant performance gap of 24.1 (76.3 vs. 52.2) with
respect to classification accuracy. The similar observations
were reported in [7] and [79]. The high PCP (97) for torso
localization in Table IV demonstrates that the mis-localization
causes little performance drop. We conclude that the bird torso
is not that distinct for bird species identification, compared
to the whole image that includes the discriminative head
part. Our alignment subnetwork can improve the classification
accuracy using the torso part. After adding alignment (with
VLF), the performance gain is about 11.1 (63.3 vs. 52.2). This
improvement shows that the better feature of the torso part is
produced. The reliability of the torso part is important. It can
be combined with the head part and the whole image to benefit
the eventual classification.

7) Overall Comparison: Our final classification accu-
racy compared with state-of-the-art methods is presented
in Table VII. The CNN models that are used by all the com-
pared methods are included in the first column of Table VII.
All results are accomplished under the setting that the bound-
ing box for the entire bird is given in training and testing. Part
annotation is available only during training. In our system,
we feed each image into the two trained networks to extract
features of the head and torso.

Table VII shows that using the head and torso features
achieve 79.5 and 63.3 accuracy. We concatenate the two fea-
ture vectors to form a combined representation with 83.7 accu-
racy. We finally tune the CNN model based on the whole
image using the pretrained model [20]. The sixth layer is
extracted for training an SVM classifier, obtaining 76.3 accu-
racy. After concatenating the features of head, torso, and the
whole image, our accuracy increases to 88.5. The methods of
[10], [31] also consider head and torso parts, and combine
CNN features of the whole image. Our improvement on accu-
racy is mainly due to the reliable localization, segmentation,
and alignment in the VLF-enabled LSAC. We compare LSAC
to the recent approaches [29], [51], [81], [84], which also
select the semantic object parts for fine-grained recondition.
For a fair comparison, we use ResNet-50 as the backbone

TABLE VII

COMPARISON WITH STATE-OF-THE-ART ON THE

CUB-200-2011 DATA SET

architecture of LSAC. Again, we concatenate the features of
head, torso and the whole image, yielding better classification
accuracy than other methods.

B. Caltech-UCSD Bird-200-2010 Data Set

The CUB-200-2010 data set [2] provides 6033 images
from 200 bird categories. It offers no part annota-
tion and contains less training/testing data. It thus can
verify whether our LSAC, which is trained on the
CUB-200-2011 data set, can be generalized to this
data set.

The classification results are shown in Table VIII. The
network is trained with the data from the CUB-200-2011 data
set. The classification subnetwork is updated on this data set
after getting the pose-aligned part images.

Our whole-image classification accuracy (in the “w/o
localization-segmentation” row) is 63.7. Through the
localization-segmentation subnetwork, the classification
accuracy of bird heads is 67.3. In this case, the performance
gain is 3.6 (67.3 vs. 63.7). The gain increases to 6.5 after
incorporating alignment. The best torso recognition accuracy
of 49.1 is achieved by adding localization, segmentation, and
alignment.
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TABLE VIII

CLASSIFICATION ACCURACY (%) OF SEMANTIC PARTS
ON THE CUB-200-2010 DATA SET

TABLE IX

COMPARISON WITH STATE-OF-THE-ART ON

THE CUB-200-2010 DATA SET

In the final experiment, we compare the classification accu-
racy with other methods. The results are listed in Table IX.
State-of-the-art results are 66.1 by the method of [10], and
66.5 is achieved by the improved LAC model [31]. Both
methods used VGG-16. Our bird-head representation obtains
70.2 accuracy. The combined head and torso representation
reaches 74.9.

Similar to previous experiments, we consider the whole
image. After combining all features, our classification per-
formance is boosted to 77.5. Our representation outperforms
previous best result by a remarkable margin of 11. We believe
better performance can be achieved if the localization-
segmentation and alignment subnetworks are adapted with part
annotation, which is however not available in this data set.
Based on a deeper backbone architecture (i.e., ResNet-50),
LSAC outperforms the recent methods [66], [85], [86] on the
CUB-200-2010 data set.

C. Stanford Cars-196 Data Set

Besides bird categorization, our LSAC model can be trans-
ferred to the fine-grained recognition on other object types.
In this section, we use the Stanford Cars-196 data set [5] as
an evaluation benchmark. This data set contains 16 185 images
from 196 car classes, and is prepared for fine-grained recog-
nition tasks. There are 8144 training images and 8041 testing
images. Unlike the CUB-200-2011 data set [1], the Stanford
Cars-196 data set [5] does not provide the object masks.
To avail our LSAC model on this data set, we additionally
provide the binary masks of all the cars in the 16 185 images.
Fig. 12 shows the examples of our mask annotations. We again

Fig. 12. Examples of annotated masks for Stanford Cars-196 data set.

TABLE X

COMPARISON WITH STATE-OF-THE-ART ON THE
STANFORD CARS-196 DATA SET

follow the implementation details as we have described in
Section V, adjusting the scales to A = {1.1, 1.5, 1.7}.

In Table X, we compare the classification accuracy of
LSAC with those of other methods. When applying the LSAC
model for car categorization, we perform the localization,
segmentation, and alignment on the car with no subdivided
part. Similarly, the compared methods also take their input as
the whole car. Using VGG architecture, the previous best result
of 92.6 is reported in [9]. Using the same VGG architecture
to construct our LSAC model, we achieve better performance
than the compared methods. Our result of 96.3 on the Stanford
Cars-196 data set demonstrates that LSAC provides accurate
classifications of cars. Using the powerful ResNet-50 as the
backbone architecture, LSAC yields better classification accu-
racy on the Stanford Cars-196 data set and surpasses the recent
methods [81], [86], [89].

D. Sensitivity to the Number of Annotations

We use ground-truth annotations (i.e., bounding boxes and
pixel-wise categories) to train deep LSAC model. To exam-
ine the scalability of our model, we control the number of
annotations for training. Initially, we use full annotations for
training. Subsequently, we reduce 10% of annotations at each
time, and evaluate the classification accuracies on the CUB-
200-2011, CUB-200-2010, and Stanford Cars-196 data sets.
All results can be found in Fig. 13.

By reducing the annotations, we decrease the classification
performances on all data sets. This is because the localization,
segmentation, and alignment become less reliable with less
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Fig. 13. Sensitivity to the number of annotations. Classification accuracies are evaluated on the (a) CUB-200-2011, (b) CUB-200-2010, and (c) Stanford
Cars-196 data sets.

training data. Specifically, we compare the cases, where
full annotations and only 10% of annotations are used,
respectively. We generally find about seven points of
performance drop on all data sets. Using 10% of annotations,
we have no more than 800 images for training LSAC
model. Rather than using full annotations, our LSAC model
still achieves reasonable performance with much less data,
remarkably saving the labeling effort. We compare our
approach to other methods [9], [31], [63], [65]. Given
inadequate annotations, these methods yield unsatisfactory
classification accuracies on different data sets.

VII. CONCLUDING REMARKS

We present a deep neural network to achieve fine-grained
recognition. We share the same observation with previous
work that proper localization, segmentation, and alignment of
salient object parts are important. Based on this, we contribute
a unified LSAC system to incorporate localization, alignment
and classification. The modules are connected with an opti-
mally defined VLF to enable smooth FP and BP. Results
show that this process improves part finding and match-
ing, as well as object segmentation, which eventually helps
classification.
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