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Purpose: Breast cancer is the most common cancer and the leading cause of cancer-related deaths
for women all over the world. Recently, automated breast ultrasound (ABUS) has become a new and
promising screening modality for whole breast examination. However, reviewing volumetric ABUS
is time-consuming and lesions could be missed during the examination. Therefore, computer-aided
cancer detection in ABUS volume is extremely expected to help clinician for the breast cancer
screening.
Methods: We develop a novel end-to-end 3D convolutional network for automated cancer detection
in ABUS volume, in order to accelerate reviewing and meanwhile to provide high detection sensitiv-
ity with low false positives (FPs). Specifically, an efficient 3D Inception Unet-style architecture with
fusion deep supervision mechanism is proposed to attain decent detection performance. In addition,
a novel asymmetric loss is designed to help the network balancing false positive and false negative
regions, thus improving detection sensitivity for small cancerous lesions.
Results: The efficacy of our network was extensively validated on a dataset including 196 patients
with 661 cancer regions. Our network obtained a detection sensitivity of 95.1% with 3.0 FPs per
ABUS volume. Furthermore, the average inference time of the network was 0.1 second per volume,
which largely shortens the conventional reviewing time.
Conclusions: The proposed network provides efficient and accurate cancer detection scheme using
ABUS volume, and may assist clinicians for more efficient breast cancer screening. © 2020 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.14389]

Key words: automated breast ultrasound (ABUS), breast cancer, computer-aided detection,
convolutional neural networks

1. INTRODUCTION

Breast cancer is the most common cancer and the leading
cause of cancer-related deaths for women all over the world.1

Early screening and treatment of breast cancer have been
shown to be useful in reducing mortality rates.2 Currently
mammography and breast ultrasound are two popular modali-
ties for the screening of breast tumor.3 Although

mammography is the primary imaging tool for screening, it
suffers from the limitation of insensitivity for women with
dense breast tissue.4 As an adjunct imaging modality to
mammography, the breast ultrasound improves the screening
sensitivity in dense breasts.5 However, conventional two-
dimensional (2D) handheld ultrasound is operator-dependent
and cannot visualize the whole breast. To alleviate the draw-
backs of conventional ultrasound, automated breast
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ultrasound (ABUS) has been developed to automatically scan
the whole breast and provide 3D views of the breast from the
skin line to the chest wall (see Fig. 1). However, reviewing
ABUS images is extremely time-consuming, and the rela-
tively high false positive rate remains a concern (Fig. 2).
Therefore, the computer-aided detection (CADe) in ABUS
images is expected to assist clinicians in facilitating the iden-
tification of breast cancer lesions.

In the last decade, a number of CADe methods for breast
cancer screening have been proposed. One main methodolog-
ical category is low-level image processing based scheme.
Ikedo et al.6 employed the Canny edge detector and water-
shed algorithm to identify mass candidate regions. The detec-
tion sensitivity was 80.6% with 3.8 false positives (FPs) per
whole breast image on a dataset of 36 masses (15 cysts, 5
fibroadenomas, and 16 malignant masses). Chang et al.7 uti-
lized gray level slicing method to merge pixels with similar
intensities and divide ultrasound images into several regions.
Then a set of computerized features were calculated to deter-
mine whether or not each region was a part of a tumor. The
detection sensitivity of this CADe system was 92.3% with
1.76 FPs per case on a dataset of 25 patients with 26 lesions.
Such image processing methods were easy to be imple-
mented; however, they required very strong prior knowledge
on intensity distribution, which may probably result in a
reduced sensitivity when the image quality is not good
enough. In contrast, traditional machine learning methods

have been widely investigated, as another methodological
stream, to analyze the ABUS images using various hand-
crafted features. Tan et al.8 calculated several voxel features
such as water droplets, sawtooth, contrast, depth, etc., and
further used a GentleBoost cascade classifier to detect tumor
regions. Although the FP per ABUS volume was <1; the sen-
sitivity was only 64% on a dataset including 323 breast
lesions. Moon et al.9 employed fuzzy C-means clustering to
extract abnormal regions, then quantified seven echogenicity/
morphology-related features and used a logistic regression
classifier to filter out the FP regions. The sensitivity was
89.19% with 2.0 FPs per volume on a dataset including 148
tumor lesions. Ye et al.10 used 3D geodesic active contours to
segment candidate regions and applied support vector
machine to discriminate real breast masses. The detection
sensitivity were 95%, 90%, and 70% with 4.3, 3.8, and 1.6
FPs per volume, respectively, on a dataset including 51
ABUS volumes with 44 breast masses. Kozegar et al.11 uti-
lized an ensemble classification method to classify the cancer
regions and achieved region-based sensitivity of 68% at 1 FP
per ABUS image. It is worth noting that most traditional clas-
sification-based methods had complicated pipelines and
required substantial hand-crafted features.

Recently, deep learning methods have become dominant
over traditional CADe approaches.12 Yap et al.13 studied sev-
eral conventional deep models (e.g., 2D Unet14, LeNet15 and
FCN-AlexNet16) for breast lesion detection in 2D ultrasound

FIG. 1. Automated breast ultrasound (ABUS) images. Red contours indicate cancer regions annotated by a clinician. Cancers have large intraclass appearance
variations. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. Common cancer false positive types: (a) vascular dilatation due to the compression from neighboring lesion, (b) hydatoncus, (c) shadow caused by ribs,
(d) shadow caused by the mammary gland, red contour denotes a biopsy-proven cancer region. [Color figure can be viewed at wileyonlinelibrary.com]
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images. Validated on two 2D ultrasound datasets with 306
and 163 images, the detection sensitivities were 98% and
92% with FPs per image of 0.16 and 0.17, respectively. How-
ever, directly employing these 2D convolutional neural net-
works (CNNs) to perform cancer detection in ABUS volumes
cannot effectively leverage the 3D information provided by
ABUS data, thus may not guarantee satisfactory sensitivity
and FPs. Our previous work17 proposed a 3D CNN architec-
ture for cancer detection in ABUS volumes. A densely deep
supervision mechanism was introduced to augment the detec-
tion sensitivity. To meanwhile control the FPs, a threshold
map layer was implemented in the network to adaptively dis-
tinguish cancer and non-cancer regions. The detection sensi-
tivity was 93% at 2.2 FPs per ABUS volume, on a dataset of
196 patients with 661 cancer regions. Although the proposed
CADe network can provide high sensitivity and low false
positives, it poses challenges of huge computation and net-
work parameters. The previous network took averagely 1 min
to automatically review an ABUS volume; the reviewing pro-
cedure is efficiently accelerated in this study, which is more
clinically practical to facilitate the CADe for breast cancer.

For this study, we offer an innovative end-to-end 3D convo-
lutional network for automated cancer detection in ABUS, in
order to accelerate reviewing and meanwhile to provide high
detection sensitivity with low FPs. Our contribution is twofold.
First, we develop an efficient 3D Inception Unet-style CNN
with fusion deep supervision mechanism. Inspired by decom-
position of convolution kernel in Inception V2,18 we design
inception CNN blocks which fuse 2D and 3D convolution
operations. The proposed CNN blocks allow our network
maintaining a decent detection performance and also signifi-
cantly reducing parameters of the conventional 3D Unet. Sec-
ond, we propose a novel asymmetric loss (AL) to help the
CNN balancing false positive and false negative regions. The
proposed AL is effective in solving the missing issue of small
cancerous regions, thus improving detection sensitivity. The
efficacy of our network was extensively validated on a dataset
including 196 patients with 661 cancer regions.

The rest of this article is described as follows. Section 2
introduces the specific details of the proposed 3D inception
Unet with asymmetric loss. Section 3 shows the detection
performance of our method. Sections 4 and 5 present the dis-
cussion and conclusion of this study, respectively.

2. MATERIALS AND METHODS

The proposed 3D inception Unet for cancer detection in
ABUS is illustrated in Fig. 3. Based on the performance anal-
ysis of conventional 3D Unet,19 it is demonstrated that the
first few layers consume the most GPU memory. To alleviate
the GPU burden, we use stride convolution (stride = 2) in the
first layer. Every convolution block includes a Conv3D, batch
normalization (BN), and Relu layer. The construction of our
3D inception Unet involves two types of inception blocks and
multiple deep supervised branches. In the expansive path of
the Unet architecture, each concatenation operator has 2
inputs. The concatenated features (orange) at each upsam-
pling level are sent to following upsampling block (gray
arrow) and also to deep supervision block (orange arrow).
The deep supervision blocks fuse low-level (LL) and high-
level (HL) features for better prediction.

The following subsections describe the proposed net-
work’s details, and present the fusion deep supervision mech-
anism and the novel asymmetric loss.

2.A. 3D Inception Unet

The 3D CNN has been widely applied in video processing,
such as segmentation and classification.20,21 Nevertheless,
most 3D networks pose challenges of huge computation load
and number of parameters (e.g., C3D22 has 8 layers but with
about 28M parameters). Inspired by decomposition of convo-
lution kernel in Inception V2,18 here, we design a new 3D
inception block to address above issue. Different from pro-
cessing the image sequence in video [23], all three dimen-
sions in medical volumes are relevant. Therefore, we design

FIG. 3. The schematic overview of the proposed 3D inception Unet. The designed network involves two types of inception blocks (see details in Section 1), and
multiple deep supervised branches which fuse low-level (LL) and high-level (HL) features (see details in Section 2). Note that Conv3D is a convolution operator
with 3 9 3 9 3 kernel and followed by a batch normalization and Relu layer. In the first Conv3D layer, stride = 2. [Color figure can be viewed at wileyonlinelib
rary.com]
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two novel multi-function convolution blocks, Inception Block
A and Inception Block B as illustrated in Figs. 4 and 5
respectively, to mimic the radiologist’s perspective of reading
volumes in three planes. In the type A, we use 5 groups of
3D convolution units. Specifically, 1 9 1 9 1 convolution
unit is used to reduce channels of features and extract point-
wise features; 1 9 1 9 3, 1 9 3 9 1, and 3 9 1 9 1 con-
volution units are used to extract line-wise features;
1 9 3 9 3, 3 9 1 9 3, and 3 9 3 9 1 convolution units
are introduced to extract plane-wise features; and a few
3 9 3 9 3 3D convolution units are employed as supple-
ment to exact 3D features. Since the size of the decomposed
convolution kernel is equivalent to the size of 2D convolu-
tion, the network does not dramatically increase its parame-
ters while increasing the depth. To further reduce network
parameters, we add a B type of inception block which totally
removes the 3 9 3 9 3 convolution unit (Fig. 5). Note that
we use residual structure in both inception blocks, by directly
connecting the input to the addition block. The inception

blocks A and B are equipped in the network as shown in
Fig. 3. The designed inception blocks are beneficial for the
network to extract abundant features and converge itself more
efficiently.

2.B. Fusion Deep Supervision

The Unet architecture has a downsampling path and an
upsampling path. At each level of the feature map, the skip
connection is used to compensate for the missing details dur-
ing the downsampling procedure. In our previous work,17 we
used densely supervised branches as guidance for the cancer
detection at each level and meanwhile preventing network
over-fitting. However, multiple output branches corresponding
to multiple loss functions would introduce lots of hyper param-
eters, which induces the tedious issue of hyper parameter tun-
ing. Multiple loss functions can be calculated as follows:

L ¼
Xn

i¼1

ki � aux lossi; (1)

where ki is the weighting parameter of the loss function
aux lossi for the ith branch; and n is the number of total
supervised branches. Tuning these hyper parameters ki is
very time-consuming and may not achieve optimum. In this
study, instead of assigning each branch a weight, we add
learnable variables that can adaptively balance the weight of
different branches, thus only use one loss function to super-
vise our network. To this end, we design a fusion deep super-
vision block (see Figure 6). As illustrated in Fig. 3, the deep
supervision block has 2 inputs: (a) the concatenated feature
maps (orange) at each upsampling level, and (b) the output of
the previous deep supervision block (blue). Because of that,
compared to features from previous deep supervision block,
the concatenated features (orange) are from relatively shallow
layer; we denote concatenated feature maps as low-level (LL)
features and the other as high-level (HL) features. In our
inception Unet network, we plug in fusion deep supervision
blocks to fuse upsampled probability volume with low-level
probability volume. Supervised information can be propa-
gated by the highway of the fusion layer defined by the fol-
lowing equation:

FðPiÞ ¼ rðf 1�1�1ðPiÞÞ; (2)

where Pi 2 RH�W�D�C is the feature map that concatenates
the low-level (LLi) and high-level (HLi) features along chan-
nel-axis; the convolution operator of f 1�1�1 assigns the
weight of coarse segmentation and fine segmentation proba-
bility maps adaptively; and the sigmoid activation operator r
is used to calculate the probability volume after fusion.

2.C. Asymmetric Loss

Binary cross entropy (BCE) loss and Dice loss (DSC)
are usually employed for segmentation tasks.14,17 The BCE

FIG. 4. Inception block A. [Color figure can
be viewed at wileyonlinelibrary.com]

FIG. 5. Inception block B. [Color figure can
be viewed at wileyonlinelibrary.com]
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loss is point-wise and may not be good at learning shape
features compared to DSC loss which can be described as
follows:

DSCðA;BÞ ¼ 2jA \ Bj
jAj þ jBj ; (3)

where A and B denote the predicted cancer region and
the ground truth, respectively; |A ∩ B| denotes the inter-
section area of A and B. Note that when using DSC as
loss, the main objective of network training is to expand
the overlapped area of ground truth and predicated cancer
region. Thus, the cancer region with large area would
dominate the optimization procedure. For instance, sup-
pose that there are a large cancer region and a small can-
cer region in one image. Then although the DSC value
may be high enough, the small cancer may probably not
be segmented because the DSC loss cannot balance the
large cancer and small cancer. In general, the evaluation
of DSC cannot reveal the real detection performance since
it assigns equal weight to the false negative and false
positive areas.

To address the aforementioned issue, we design an asym-
metric loss (AL) to help the network balancing false positive
and false negative regions. AL is defined as

LalðA;B; a; b; cÞ ¼ �ð1� TðA;BÞÞc logðTðA;BÞÞ; (4)

where

TðA;BÞ ¼ jA \ Bj
jA \ Bj þ ajA� Bj þ bjB� Aj ; (5)

where T(A, B) is Tversky index (TV),24 and |A�B|, |B�A|
denote false positive area and false negative area, respec-
tively. The TV is an asymmetric similarity measure, and can
be regarded as the generalization of DSC. When a = b = 0.5,
TV is equivalent to DSC. By adjusting a and b, TV can pay
different attention to the false positive and false negative
areas. However, TV may converge to same optimum with
DSC after a large number of iterations, thus inducing unsatis-
factory detection performance. In order to ensure subtle can-
cers to be detected, we further combine focal loss25 and TV
to define the asymmetric loss, see Eq. (4). The novel AL can
automatically focus on hard samples with the ability of learn-
ing shape features. AL force networks to be over-segmenta-
tion, punish under-segmentation, thus ensuring small cancers

can be detected. Note that since AL may be unstable at the
beginning of network training, we recommend that pre-train-
ing using DSC and then replacing DSC with AL for better
results.

3. EXPERIMENTS AND RESULTS

3.A. Materials

All the experimental data were acquired from Sun Yat-
Sen University Cancer Center using Invenia ABUS U-sys-
tem (GE, USA). Informed consent for this retrospective
study was obtained from our institutional review board. To
image the whole breast, three ABUS volumes including
anterior-posterior (AP), lateral (LAT), and medial (MED)
passes were acquired for each breast. Therefore at least
six ABUS volumes were collected for each patient. Each
volume was with the voxel resolution of 0.511 mm,
0.082 mm and 0.200 mm in the transverse, sagittal and
coronal sections, respectively. The size of each ABUS vol-
ume was 330 9 422 9 831.

In our experiments, ABUS volumes from 196 females
(ages from 30 to 75 yr, mean 49 yr) with biopsy-proven
breast cancers were acquired. From these data, 559 volumes
were manually labeled by an experienced clinician using our
developed annotation software. The 559 volumes contained
totally 661 cancer regions (volume: 0:01� 86:54 cm3, mean:
2:84 cm3). Fourfold cross-validation was conducted to inves-
tigate the efficacy of our detection network. As a control, 119
ABUS volumes without any abnormal findings were also
involved for evaluations. Note that we randomly divided the
training/testing sets by patients to avoid same one’s data
existing in both sets.

3.B. Evaluation Metrics

The metrics employed to evaluate detection performance
included sensitivity, FPs per ABUS volume, intersection
over union (IoU), and distance between centers of detected
and ground truth cancers (CenDis). Sensitivity means the
fraction of the cancerous lesions that are correctly
detected. It is over the total number of cancerous lesions
in all the ABUS volumes in the test set. Detection is con-
sidered as a true positive if the detected region has over
0.2 IoU with the ground truth. FPs per volume is the
average over the falsely detected cancerous regions per
ABUS volume. A better detection shall have larger values
of sensitivity and IoU, meanwhile maintain lower FPs and
CenDis.

3.C. Implementation Details

The proposed network was implemented with the Keras
for Tensorflow.26 Considering the burden of GPU memory,
we resized each ABUS volume into the size of
256 9 128 9 256. The training augmentation included flip-
ping, scaling, and rotation. All the training and testing were

FIG. 6. Fusion deep supervision block. [Color figure can be viewed at wile
yonlinelibrary.com]
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conducted on a single NVIDIA TITAN GPU with memory of
12 GB. Adam27 was employed to train the whole framework.
In the training phase, the initial learning rate was set as
1e�3. As for the AL, a = 0.95, b = 0.05, and c = 3*. The
training procedure stopped after 60 epochs. Note that because
AL may have unstable convergence at the beginning of train-
ing, we used BraTS201528 to pre-train the network and then
employed pre-trained weights for the initialization†. In the
inference phase, the output of the network was 3D probability

FIG. 7. Example cancer detection results obtained using our proposed network. (a) The 3D visualization of ABUS volumes with (b) annotated ground truth (red)
and predicted cancer regions (green), and (c) corresponding ABUS slices illustrating ground truth (red) and correctly identified cancer regions (green). [Color
figure can be viewed at wileyonlinelibrary.com]

FIG. 8. The free-response receiver operating characteristic curves (FROCs)
of the proposed network and compared models. [Color figure can be viewed
at wileyonlinelibrary.com]

TABLE I. Numerical results of sensitivity, FPs per volume, IoU and CenDis
for different networks (Mean�SD).

Method
Sensitivity

(%)
FPs per
volume IoU (%)

CenDis
(mm)

3D FCN29 67.0 � 47.0 1.0 � 0.9 55.4 � 10.0 3.4 � 1.3

3DVanilla Unet19 72.2 � 44.8 1.1 � 1.0 56.5 � 29.2 3.4 � 3.2

3D Residual Unet30 73.8 � 44.0 2.0 � 1.4 53.5 � 25.6 3.3 � 3.0

BCD model17 93.0 � 25.5 2.2 � 2.1 49.5 � 26.2 3.1 � 2.2

Ours 95.1 � 21.5 3.0 � 1.4 60.8 � 13.0 2.5 � 1.6

*In our validation during implementation, we have tried (a,
b) = {(0.99,0.01),(0.95,0.05),(0.90,0.10),(0.85,0.15),(0.80,0.20)},
then (a,b) = (0.95,0.05) attained satisfactory detection performance.
Thus, we set a = 0.95 and b = 0.05. As for the parameter c, we set
it empirically as 3.
†We used 274 MR volumes from BraTS2015 to pre-train the net-
work. The pre-train was an end-to-end training. The loss function
for the pre-trained was Dice loss. The reasons we used MR images
to pre-train the model are as follows: (a) Compared to ultrasound
images, MR images have better image quality (i.e., resolution, con-
trast, etc.). (b) Training using brain MR images for segmentation
task would be more stable than using breast ultrasound images,
because the foreground samples (i.e., cancerous regions) and back-
ground samples in ABUS images are much more unbalanced than in
brain MR images.
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volume with the range from 0 to 1 after sigmoid activation,
then threshold was empirically set as 0.3 for the binarization
and final prediction.

3.D. Detection Performance

Figure 7 visualizes some detection results using our pro-
posed network. By utilizing the proposed inception blocks
and asymmetric loss, our network is able to accurately predict
cancerous regions. Even for those ABUS volume containing
several cancerous lesions, our network can successfully
detect all true positive regions.

We further extensively compared our network with the
cutting-edge networks, including 3D FCN,29 Vanilla Unet,19

Residual Unet,30 and our previous breast cancer detection
(BCD) model.17 Figure 8 illustrates the free-response receiver
operating characteristic curves (FROCs) of the proposed net-
work and compared models. Table I reports the numerical
results of sensitivities, FPs per ABUS volume, IoU, and Cen-
Dis for different networks. Figure 9 shows the error bars of
different networks. It can be observed that our network con-
sistently outperformed other compared networks. Our net-
work obtained a sensitivity of 95.1% with 3.0 FPs per
abnormal ABUS volume‡. And for 119 ABUS volumes from

healthy females, our network averagely generated 1.3 FPs per
volume. Compared to conventional FCN and Unet, our net-
work significantly improved detection sensitivity (with P-val-
ues of 1.47e�41 for 3D FCN-Ours, 4.91e�31 for 3D Vanilla
Unet-Ours, and 6.84e�28 for 3D Residual Unet-Ours,
respectively) and also controlled FPs at an acceptable level.
Our detection sensitivity also surpassed the state-of-the-art
BCD model,17 mainly due to the design of our fusion deep
supervision block and asymmetric loss. Furthermore, BCD
model took 1 minute to analyze an ABUS volume. In con-
trast, with the effective inception blocks, our network, on the
average, only spent 0.1 second for the automated cancer
detection in one ABUS volume.

To demonstrate the effect of the proposed asymmetric
loss, we directly compared our network with the model using
conventional cross entropy (CE) loss and DSC loss, respec-
tively. The comparison results are listed in Table II. Experi-
mental results show the asymmetric loss outperformed CE
loss and DSC loss with respect to detection sensitivity, IoU,

FIG. 9. The error bars of the proposed network and compared models. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. The comparison results (Mean � SD) of our network with differ-
ent loss functions.

Method Sensitivity (%) FPs per volume IoU (%) CenDis (mm)

CE loss 76.9 � 42.2 1.9 � 1.0 52.5 � 31.6 3.2 � 3.0

DSC loss 84.2 � 36.4 2.8 � 2.1 54.1 � 22.3 3.1 � 2.7

AL loss 95.1 � 21.5 3.0 � 1.4 60.8 � 13.0 2.5 � 1.6

‡Note that the sensitivity and specificity in classifying women with/
without a breast cancer was 98.5% and 68.9%, respectively. In addi-
tion, by consolidating one’s whole ABUS volumes, the sensitivity in
detecting distinct cancers and FPs per person was 97.9% and 8.5
FPs per person, respectively.
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and CenDis, which demonstrates the asymmetric loss con-
tributed to the cancer detection.

Figure 10 further shows the volume distribution of all
cancerous regions, and their corresponding detection sensitivi-
ties achieved by BCD model17 and our proposed network,
respectively. It is shown in Fig. 10 that our network outper-
formed BCD model in every different sub-ranges of cancer
volume. Specifically, when cancer was larger than 1cm3, our
network achieved 100% detection rate. Even when cancer was
smaller than 1cm3, our network had a sensitivity of 87.9%.

4. DISCUSSION

Automated breast ultrasound has become a popular and
promising imaging modality for the early screening of breast
cancers,31 especially in women with dense breast tissue.32

However, reviewing an entire ABUS volume is extremely
time-consuming. In this study, the automated reviewing pro-
cedure is efficiently accelerated to 0.1 s for an ABUS vol-
ume, thus is more clinically practical to facilitate the
diagnosis for breast cancer. Motivated by the decomposition

FIG. 10. Left: the volume distribution of 661 cancerous regions. Right: the detection sensitivities of the state-of-the-art BCD model17 and our network. [Color
figure can be viewed at wileyonlinelibrary.com]

FIG. 11. Some failures including over segmentation, false positive/negative cases. [Color figure can be viewed at wileyonlinelibrary.com]
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of convolution kernels described in Inception V2,18 we
designed inception blocks A and B as shown in Figs. 4 and 5,
to significantly reduce network complexity. Moreover, the
developed inception blocks fused 2D and 3D convolution
operations, which followed the radiologist’s routine of inter-
preting 3D ABUS data in three perspectives. Such design is
beneficial to extract abundant features and aggregate them
more efficiently. Therefore, the proposed CNN architecture is
useful for accelerating screening and meanwhile maintaining
a decent detection performance.

Early screening of breast cancer is proved to be helpful in
reducing mortality rates.2 Thus, the cancer detection sensitiv-
ity should be the main concern, especially for those relatively
small cancerous lesions. Considering that the conventional
DSC loss assigns equal weight to false negative and false
positive regions, which may not be suitable for the extraction
of small cancerous lesions, we utilized asymmetric loss to
force networks performing over-segmentation, thus ensuring
small cancers can be detected. Figure 10 demonstrates the
proposed asymmetric loss is effective in identifying small
cancerous regions, thus improving detection sensitivity. The
numerical comparison of different loss functions in Table II
also demonstrates the asymmetric loss contributes to the
improvement of detection sensitivity. Nevertheless, the asym-
metric loss introduces extra hyper parameters to weight the
DSC index. In our current implementation, the values of most
hyper parameters were set empirically, which may not be
optima. Future work may focus on devising suitable loss with
few or without hyper parameters. In our deep supervision
scheme, we have attempted to reduce the hyper parameters
used for weighting each supervision branch. To this end, we
proposed a fusion deep supervision scheme, which has learn-
able variables that can adaptively weight different supervision
branches. In such a way, multi-level features can be adap-
tively fused and supervision information is propagated effec-
tively.

Although with satisfactory detection performance, our
proposed CADe network still has some limitations. Figure 11
illustrates some typical failed cases including over segmenta-
tion, false positives/negatives. In order to improve the detec-
tion rate for small cancers, the asymmetric loss was used to
impel the network to conduct over-segmentation. Although
very effective in extracting small cancerous regions, the over-
segmentation issue may fuse two close cancerous regions as
one prediction, as shown in Fig. 11(a). Fortunately, the over-
segmented regions contain the real cancers and could still
provide useful guidance to help clinicians for the breast can-
cer screening. In addition, false negatives and false positives
were observed in our experiments. As shown in Fig. 11(b), all
undetected cancerous lesions were smaller than 1cm3. As for
the relatively high FPs, this is mainly due to the trade-off
between specificity and sensitivity. The main purpose of our
method is to improve the detection sensitivity and to ensure
that the detected cancer candidates can cover the real cancer-
ous regions as much as possible, thus facilitating the further
assessment by doctors. The high sensitivity would generate
more FPs. The FROC results in Figure 8 show that our

method achieved a sensitivity of 95%, 92%, and 86% with 3,
2, and 1 FPs per ABUS volume, respectively. In our experi-
ments, shadows and fatty masses might be mis-identified as
cancerous lesions, as illustrated in Fig. 11(c). We still have to
optimize our CADe system to achieve less false negatives
and false positives in the future.

5. CONCLUSIONS

In this study, we develop a novel end-to-end 3D CNN for
breast cancer detection in volumetric ultrasound images.
Specifically, an efficient 3D inception Unet architecture with
fusion deep supervision mechanism is devised to reduce net-
work parameters and meanwhile attaining decent detection
performance. Additionally, a new asymmetric loss is
designed to help the network balancing false positive and
false negative regions, thus improving detection sensitivity,
especially for small cancerous regions. The efficacy of the
proposed network is validated on 559 cancerous ABUS vol-
umes and 119 normal volumes. Experiments show our net-
work has the sensitivity of 95.1% at 3.0 FPs per ABUS
volume. Moreover, the average CADe time of the network is
only about 0.1 s per volume. In general, the proposed net-
work attains quite efficient and accurate detection perfor-
mance, and may assist clinicians for more practical CADe in
ABUS.
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