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Abstract

Semantic scene completion (SSC) requires the estimation of
the 3D geometric occupancies of objects in the scene, along
with the object categories. Currently, many methods employ
RGB-D images to capture the geometric and semantic in-
formation of objects. These methods use simple but popular
spatial- and channel-wise operations, which fuse the infor-
mation of RGB and depth data. Yet, they ignore the large dis-
crepancy of RGB-D data and the uncertainty measurements
of depth data. To solve this problem, we propose the Fre-
quency Fusion Network (FFNet), a novel method for boosting
semantic scene completion by better utilizing RGB-D data.
FFNet explicitly correlates the RGB-D data in the frequen-
cy domain, different from the features directly extracted by
the convolution operation. Then, the network uses the corre-
lated information to guide the feature learning from the RG-
B and depth images, respectively. Moreover, FFNet accounts
for the properties of different frequency components of RGB-
D features. It has a learnable elliptical mask to decompose
the features learned from the RGB and depth images, attend-
ing to various frequencies to facilitate the correlation pro-
cess of RGB-D data. We evaluate FFNet intensively on the
public SSC benchmarks, where FFNet surpasses the state-of-
the-art methods. The code package of FFNet is available at
https://github.com/alanWXZ/FFNet.

Introduction
In recent years, the vision community has witnessed tremen-
dous progress on semantic scene completion and its applica-
tions in diverse scenarios, e.g., grasping function of robots
and obstacle avoidance of cars. The completion task aims to
infer the 3D geometry occupancy of the voxelized scene and
the semantic label of each voxel, simultaneously (Song et al.
2017; Liu et al. 2018a; Zhang et al. 2019).

It has proven that RGB and depth data are useful cues in
semantic scene completion task (Wang et al. 2019; Li et al.
2020b,d; Liu et al. 2018a). RGB images provide seman-
tic information for classifying different objects. And depth
images provide the geometry information for inferring the
3D spatial structure and layout. In some challenging indoor
scenes, depth significantly helps semantic scene completion,
where the objects with various depth values are separated.
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Existing methods adopt the element-wise summation (Li
et al. 2019, 2020b,d), the weighted summation (Liu et al.
2020a) or the channel-wise concatenation (Liu et al. 2018a)
to fuse the multi-modality RGB-D data. However, these
methods ignore the large discrepancy between the RGB and
depth modalities. Note that there are many uncertainty mea-
surements of the depth data, which is the challenge of RGB-
D fusion (Chen et al. 2020c; Wang et al. 2020b; Valada, Mo-
han, and Burgard 2020; Piao et al. 2019). Thus, the current
methods are ineffective when utilizing the RGB and depth
data to boost semantic scene completion tasks.

The pair of RGB and depth data are various representa-
tions of the same scene. RGB data is the photometric repre-
sentation, while depth data is the geometric representation.
They have a strong structural similarity (Fu et al. 2020; Chen
et al. 2020c; Chen and Fu 2020; Lin and Huang 2019; Lin
et al. 2018, 2017). We aim at utilizing the correlation be-
tween RGB-D features for multi-modality fusion.

Motivated by the above analysis, we propose a novel
and effective Frequency Fusion Network (FFNet) to achieve
RGB-D fusion for semantic scene completion. FFNet adopts
a correlation and assistance pipeline to tackle the challenges
of RGB-D fusion. The key idea is to learn the frequency
feature to capture the correlation of RGB and depth data.
FFNet uses the correlated information to guide the compu-
tation of RGB and depth features. Our Frequency Fusion
Module leads to the structure information enhancement of
the RGB and depth features.

To achieve the correlation between the RGB and depth da-
ta for information enhancement, we propose a novel mech-
anism that facilitates one modality better fused with the
other. We decompose the RGB and depth features by an
elliptical mask, which is learned in a data-driven manner.
The frequency describes the spatial changing of an im-
age. High-frequency components correspond to the rapidly
changing areas, like the edge and texture of an object. The
low-frequency components represent the smooth areas (Li
et al. 2020e). Intuitively, the similarity of different frequency
components between RGB and depth features is discrepant.
We find a more effective correlation between RGB-D fea-
tures by emphasizing different frequency components.

There are two advantages of using frequency learning to
correlate the RGB-D features. First, it can explicitly find the
correlation of RGB-D data. Different from the features di-
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Figure 1: Overview of FFNet. We feed RGB-D data into the ResNet-50 backbone to extract RGB and depth features, which are
fused by the Frequency Fusion Module. With the 2D-3D projection layer, we map the RGB-D features into the 3D space. We
use the 2D segmentation subnetwork to predict the 2D semantic label from the RGB features extracted by the RGB branch. The
semantic segmentation prediction is projected to 3D and concatenated with the RGB-D features. The concatenated features are
fed into the decoder to predict the semantic scene completion results. “Fre Module” represents the proposed Frequency Fusion
Module. The detail of the Frequency Fusion Module is illustrated in Figure 2.

rectly extracted by convolution operations, the proposed fre-
quency correlation can be regarded as calculating the “patch
similarity” between one modality and every position of the
other modality. It thus obtains the relation between RGB-D
data. Second, emphasizing different frequency components
decomposed by the learned elliptical mask better helps to
find the correlation of RGB-D data.

As illustrated in Figure 2 and 3, we propose three step-
s to fuse RGB-D data: 1) emphasizing different frequency
components of RGB-D features by elliptical decomposition
mask, 2) correlating the RGB-D features in the frequency
domain, and 3) aggregating the correlation descriptor with
RGB and depth features separately to generate the enhanced
RGB and depth features.

As the overview shown in Figure 1, the framework of
FFNet comprises four critical components: 1) a 2D fea-
ture extraction for computing the 2D multi-modality features
boosted by Frequency Fusion Block, 2) a 2D segmentation
subnetwork that uses the extracted RGB features to predic-
t a 2D semantic segmentation mask and the 2D mask are
concatenated with the fused RGB-D features, 3) a 2D-3D
projection layer which projects the 2D feature to 3D volume
and 4) 3D subnetwork for predicting the completion result.

Our contribution can be summarized as follows:

• We propose a novel FFNet to utilize the information of
RGB-D data for semantic scene completion. FFNet fuses
the RGB-D features by modeling the correlation between
the RGB and the depth data in the frequency domain. The
correlation enhances the RGB and depth features.
• We propose a frequency attention mechanism to boost

the correlation of the RGB-D feature. The mechanism
attends to different frequencies of each modality using
the learnable elliptical mask.
• FFNet achieves state-of-the-art results on the public

datasets for semantic scene completion.

Related Work
Semantic Scene Completion Song et al. (2017) initialize
the task of semantic scene completion. They observe that oc-
cupancy patterns of the environment and the semantic labels
of the objects are tightly intertwined. Therefore, they use 3D
CNN to predict the semantic object categories and volumet-
ric occupancy. Based on the data modality, we recognize the
completion methods as the RGB- or depth-based methods.

For depth as input, most of the works encode depth as
Signed Distance Function(SDF). It can directly represent the
2D observation into the same 3D physical and facilitate the
network to learn geometry and scene representation. Zhang
et al. (2018) speed up semantic scene completion by Spatial
Group Convolution, which divides input voxels into differ-
ent groups then carries out 3D sparse convolution on these
separated groups. Zhang et al. (2019) propose a cascaded
context pyramid network and a guided residual refinement
module to integrate both local geometric details and multi-
scale 3D contexts of the scene.

Another category is using RGB-D as input (Li et al.
2020d; Liu et al. 2018a; Chen et al. 2020b; Li et al. 2020b).
Liu et al. (2018a) propose a CNN that sequentially accom-
plishes two subtasks, i.e., 2D semantic segmentation and 3D
semantic scene completion. They extract the RGB-D fea-
tures in a double-branch way. The extracted RGB-D fea-
tures are concatenated. Chen et al. (2020b) present a novel
anisotropic convolutional network that is much less compu-
tational demanding. Li et al. (2020d) propose the AMFNet
that conducts 3D scene completion and semantic segmen-
tation simultaneously via leveraging the experience of 2D
segmentation and the reliable depth cues in the spatial di-
mension. The two tasks are multiplied in an element-wise
manner. Yu et al. (2020a) propose a 3D gated recurrent fu-
sion network to fuse the information from depth and RGB.
Li et al. (2020b) propose to use a novel 3D Sketch Halluci-
nation Module to guide the full 3D scene completion task.
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Figure 2: Overview of Frequency Fusion Module. It contains RGB-D Correlation and Feature Aggregation. More details of
Frequency Correlation is provided in Figure 3.

Different from previous RGB-D SSC methods that com-
bine RGB-D features by concatenation, element-wise sum-
mation, and weighted summation. We propose the Frequen-
cy Fusion Network to explicitly model the correlation of
RGB-D and then use the correlation information to fuse
RGB-D data for semantic scene completion.

Frequency Domain Learning Frequency analysis has
been widely used in signal processing and computer vision.
Recently, many works inspired by frequency analysis and
aim at endowing neural network with powerful ability by
frequency domain learning (Jin et al. 2020; Helou, Zhou,
and Susstrunk 2020; Qian et al. 2020; Liu et al. 2018b; Li
et al. 2020c; Bian et al. 2020; Li et al. 2020e). Most of these
works focus on using the compressing ability of Discrete
Cosine Transform(DCT), which can decompose the input
signal and discover their redundancy in the frequency do-
main. Chen et al. (2020a) propose a frequency method for
network pruning by converting filters into the frequency do-
main to investigate their redundancy. Xu et al. (2020) pro-
pose to reshape the high-resolution images in the DCT do-
main and feed the reshaped DCT coefficients to neural net-
works. Wang et al. (2020a) study the generalization of con-
volutional neural networks by frequency spectrum of image
data.

In contrast, we obtain the correlation of the RGB-D data
to guide RGB-D fusion in the frequency domain. And we
propose the frequency attention by learned elliptical mask
to facilitate modeling the correlation of RGB-D.

Method
In this section, we present the architecture of FFNet. Taking
depth and its RGB counterpart as input, the network predicts
the 3D voxel occupancy and the semantic categories of each
voxel, as illustrated in Figure 1. Each voxel is mapped to
one of the semantic labels C = [c0, c1, ..., cN−1], where c0
represents the empty voxel and N is the number of semantic
categories. Specifically, we feed RGB and depth data into a
ResNet-50 to extract features. The RGB-D features are in-

teracted and fused by the proposed Frequency Fusion Mod-
ule. Then, we use the 2D-3D projection layer to map the
fused RGB-D features 3D space. The 2D segmentation sub-
network is used to predict the 2D semantic label from the
features extracted by the RGB branch. The semantic seg-
mentation prediction is projected to 3D space. The predic-
tion is concatenated with the projected RGB-D feature. Fi-
nally, the concatenated features are fed into the decoder to
predict the semantic scene completion results.

Below, we introduce the details of FFNet from the fol-
lowing aspects: 1) Frequency Fusion Module, 2) RGB-D Se-
mantic Scene Completion Framework, 3) Loss Function.

Frequency Fusion Module
Figure 2 and 3 show the framework of RGB-D Frequency
Fusion and the frequency correlation process of Frequency
Fusion, respectively. The key idea of Frequency Fusion is
to obtain the explicit correlation of the RGB-D feature and
then the correlation descriptor is used to guide the genera-
tion of RGB-assisted depth feature and depth-assisted RGB
features. We propose three steps: 1) Frequency Attention, 2)
RGB-D Frequency Correlation and 3) Feature Aggregation.

Frequency Attention The pipeline of frequency attention
is shown in Figure 3. It emphasizes different frequency com-
ponents to boost RGB-D correlation by the mask of elliptical
decomposition. Frequency is global information. The high-
frequency components are related to the object edges, while
the low-frequency components are related to the object body.
The RGB data and depth data are the photometric and geo-
metrical representations of the same scene, respectively. The
main idea of frequency attention is that we can facilitate the
correlation between RGB-D by emphasizing different fre-
quency components. Note that the 2D low-pass filter passes
the frequencies within a circle of radius D in signal process-
ing. We propose the learned elliptical mask to decompose
the frequency signal.

We denote ri ∈ RH×W as the i-th channel of RGB fea-
tures and denote di ∈ RH×W as the i-th channel of depth
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Figure 3: Overall architecture of frequency correlation boosted by frequency attention. Note that γ is the weight to emphasize
the masked frequency component by elliptical decomposition.

feature. We transform the RGB and depth features into fre-
quency domain by:

Ri = DCT (ri), Di = DCT (di), (1)

where Ri and Di represent the RGB feature and the depth
feature in the frequency domain.DCT (·) represents the dis-
crete cosine transform that transforms a feature in the spatial
domain to the frequency domain.

Then, we use the elliptical mask to decompose each chan-
nel of RGB-D features in the frequency domain into separate
frequency components. The elliptical mask is learned by a
parameter prediction network which regresses the five pa-
rameters of the elliptical mask and a parameter of frequency
attention. The frequency attention parameter is used to em-
phasize different frequency components. The detail of the
parameter prediction network can be found in the supple-
mentary material.

The elliptical mask of i-th channel is defined as:

Mi=

{
1, ((x−m)cosθ−(y−m)sinθ)2

a2
−((x−n)cosθ−(y−n)sinθ)2

b2
<1

0, otherwise
(2)

Here, we denoteMi as the elliptical mask of the i-th chan-
nel. (m,n) represents the center of the elliptical mask. a, b,
and θ represent the semi-major axis, semi-minor axis, and
rotation angle.

Next, we use the mask weight γ to emphasize or suppress
the masked frequency component. γ is learned by the param-
eter prediction network. The output of frequency attention is
formulated as:

R
′
= Conv(σ(γ ·M ·R)) + Conv(σ(M ·R)), (3)

D
′
= Conv(σ(γ ·M ·D)) + Conv(σ(M ·D)), (4)

where R is the frequecy information transfromed from RG-
B features by DCT. D is the frequency information trans-
formed from depth features by DCT. We denote R

′
as the

frequency enhanced RGB features in DCT domain. D
′

is
the frequency enhanced depth features in DCT domain, M
= 1 −M , M = [M1,M2, · · · ,MC ]. γ is the weight of low
frequency component.

RGB-D Frequency Correlation We use RGB-D correla-
tion to explicitly find the correlation of RGB-D features. To
correlate RGB features with depth features, we define the
operation in the frequency domain as:

I = R
′
·D

′
, (5)

where · represents pixel-wise multiplication and I is the
RGB-D correlation information.

The correlation information of RGB-D features is normal-
ized and learned as:

I
′
= Conv(σ(I)), (6)

where σ(·) is the element-wise sigmoid function.Conv(·) is
the convolution layer. I

′
is the normalized and learned fea-

tures of I and I = [I1, I2, · · · , IC ].C represents the channel
dimension.

The I
′

is transformed into the spatial domain as:

F cor
i = IDCT (I

′

i). (7)

Here, F cor
i ∈ RH×W represents the RGB-D correlation em-

bedding in the spatial domain, IDCT (·) represents inverse
discrete cosine transform that transforms a feature in the fre-
quency domain to the spatial domain.

We further analyze the RGB-D frequency correlation as:

ri ∗ di = IDCT (DCT (ri) ·DCT (di)), (8)

where ∗ is convolution operation. ri is the i-th channel of
the RGB feature. di represents the i-th channel of depth fea-
ture. Notably, it is the well-known convolution theorem that
point-wise multiplication in the frequency domain equals
convolution in the spatial domain. Thus, the above opera-
tion in the frequency domain equals to convolve depth fea-
ture with RGB features in the spatial domain. In other words,
we choose one of them as a convolution kernel and convolve
with the other. Moreover, We add convolution operation to
adjust and learn the features to facilitate RGB-D correlation.
It thus obtains an explicit correlation of RGB-D features.

Feature Aggregation The feature aggregation process is
illustrated in Figure 2. To make full use of the complemen-
tarity of RGB-D features, we take the correlation informa-
tion of RGB-D features as guidance to compute the RGB-
assisted depth feature and depth-assisted RGB feature.



To use complementarity of the RGB-D feature, we define
below operation as:

ratt = Conv(F cor + r), datt = Conv(F cor + d), (9)

where ratt represents the attention score generated by RGB
features and the correlation information of RGB-D. datt rep-
resents the attention score generated by depth features and
the correlation information of RGB-D and Conv represents
the convolution operation.

The final output of Frequency Fusion Module is:

rout = r + ratt, dout = d+ datt, (10)

where rout represents the depth-assisted RGB features, dout
represents the RGB-assisted depth features and + denotes a
residual connection, which allows us to insert our block into
any network, without breaking its initial behavior.

Semantic Scene Completion Framework
We take the RGB-D images as input and predict the seman-
tic labels of 3D scenes. The framework of semantic scene
completion consists of 2D feature extraction, 2D semantic
segmentation, 2D-3D projection, and 3D feature learning.

2D feature extraction To extract 2D features from the
depth and RGB image, we use a ResNet-50 model which is
pre-training on ImageNet to the RGB branch. The weight of
the RGB branch is fixed and the weight of the depth branch
is not fixed. The two branches are interacting and fusing by
the proposed Frequency Fusion Module.

2D Semantic Segmentation 2D semantic segmentation
acquires the pixel-wise semantic predictions to boost the se-
mantic scene completion task. We use the RGB branch of
the 2D feature extraction subnetwork as our encoder which
is a pre-trained ResNet-50. We use the decoder as DeepLab
v3+ (Chen et al. 2018). DeepLab v3+ is first pre-trained on
the ADE-20k dataset (Zhou et al. 2017) and finetuned on the
NYU dataset. The segmentation results are projected to the
corresponding 3D space using the 2D-3D projection layer.

2D-3D projection To alleviate the gap between 2D and
3D, the fused 2D RGB-D features and 2D semantic segmen-
tation results are projected into the corresponding 3D posi-
tions by 2D-3D projection layer according to the intrinsic
camera matrix Kcamera, the extrinsic camera matrix [R|t]
and the depth image Idepth.

3D feature learning We add the 3D features projected
from the 2D fused RGB-D features and 3D sketch predict-
ed by 3D Sketch Hallucination Module (Chen et al. 2020b).
Then the added features are concatenated with the projected
2D semantic segmentation predictions. Below, the concate-
nated 3D features are fed into a stacked of AIC modules (Li
et al. 2019), which is a lightweight 3D CNN module. Finally,
we obtain the semantic scene completion results.

Loss Function
Given RGB-D images and ground truth semantic labels of
the 3D scenes, our proposed method can be trained in an

FloorCeil Wall Window Chair Bed Sofa Table TV Furn. Objects
(a) (b) (c) (d) (e) (f)

Figure 4: The results of different methods on the NYU
dataset. (a) Input RGB; (b) Input Depth (HHA); (c) Ground
truth; (d) SSCNet; (e) Our method without Frequency Fu-
sion; (f) Our method with Frequency Fusion.

end-to-end manner. We jointly supervise the two parts, in-
cluding Lsm and Lsk (Chen et al. 2020b). The total loss L is
computed as:

L = Lsm + Lsk, (11)

whereLsm represents the semantic loss, andLsk (Chen et al.
2020b) represents the sketch loss. We adopt the voxel-wise
cross-entropy loss function for the network training. The se-
mantic loss function can be written as:

Lsm =
∑
ijk

ωijkLsm(ŷijk, yijk), (12)

where ŷijk represents the predicted probability for the in-
dexed voxel, yijk is the ground truth label, and ωijk rep-
resents the weight of each semantic category. We use the s-
ketch loss (Chen et al. 2020b) to supervise the sketch of each
scene. A sketch refers to the 3D boundary of a 3D scene.

Experiments
Experimental Setup
Given the training data (i.e. the RGB image, the depth im-
age, and the ground truth 3D labels), we train our network
in an end-to-end manner. We implement our framework in
PyTorch. We train our model with batch size 6 in 2 GeForce
GTX 3090 Ti GPUs. We adopt mini-batch SGD with a mo-
mentum of 0.9 and weight decay of 0.0005. For both NYU
and NYU CAD datasets, we train our network for 350 e-
pochs with an initial learning rate of 0.1. We use a poly
learning rate policy where the initial learning rate is updated
by (1− iteration

max iteration )
0.9.

Comparisons with the State-of-the-art Methods
Quantitative Comparision We compare the proposed
method on NYU and NYU CAD datasets with state-of-the-
art methods. Table 1 shows the results on NYU dataset. Our
method achieves the best performance in both SC and SS-
C tasks. Despite only taking the NYU dataset for training,
our approach obtains higher IoUs than CCP. Note that CCP
uses supplementing training data from the SUNCG dataset.



Scene Completion Semantic Scene Completion
Method Training Set prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

Song et al. (2017) NYU 57.0 94.5 55.1 15.1 94.7 24.4 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7
Zhang et al. (2018) NYU 71.9 71.9 56.2 17.5 75.4 25.8 6.7 15.3 53.8 42.4 11.2 0 33.4 11.8 26.7

Li et al. (2019) NYU 71.5 80.8 61.0 21.1 92.2 33.5 6.8 14.8 48.3 42.3 13.2 13.9 35.3 13.2 30.4
Li et al. (2020b) NYU 62.4 91.8 59.2 23.2 90.8 32.3 14.8 18.2 51.1 44.8 15.2 22.4 38.3 15.7 33.3
Liu et al. (2018a) NYU - - 60.0 9.7 93.4 25.5 21.0 17.4 55.9 49.2 17.0 27.5 39.4 19.3 34.1
Liu et al. (2020b) NYU 68.7 85.0 61.3 23.5 92.0 33.0 11.6 20.1 53.9 48.1 16.2 24.2 37.8 14.7 34.1
Li et al. (2020d) NYU 66.3 80.5 57.2 20.0 78.7 27.3 20.5 21.8 56.5 53.9 19.5 18.8 40.1 19.5 34.2

Zhang et al. (2019) NYU 74.2 90.8 63.5 23.5 96.3 35.7 20.2 25.8 61.4 56.1 18.1 28.1 37.8 20.1 38.5
Chen et al. (2020b) NYU 85.0 81.6 71.3 43.1 93.6 40.5 24.3 30.0 57.1 49.3 29.2 14.3 42.4 28.6 41.1

Li et al. (2019) NYU+SUNCG 78.8 94.3 67.1 25.5 98.5 38.8 27.1 27.3 64.8 58.4 21.5 30.1 38.4 23.8 41.3
Ours NYU 89.3 78.5 71.8 44.0 93.7 41.5 29.3 36.2 59.0 51.1 28.9 26.5 45.0 32.6 44.4

Table 1: Results of different methods on NYU dataset.

Scene Completion Semantic Scene Completion
Method Training Set prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

Song et al. (2017) NYUCAD+SUNCG 75.4 96.3 73.2 32.5 92.6 40.2 8.9 33.9 57.0 59.5 28.3 8.1 44.8 25.1 40.0
Li et al. (2019) NYUCAD 88.7 88.5 79.4 54.1 91.5 56.4 14.9 37.0 55.7 51.0 28.8 9.2 44.1 27.8 42.8
Li et al. (2019) NYUCAD 88.2 90.3 80.5 53.0 91.2 57.2 20.2 44.6 58.4 56.2 36.2 9.7 47.1 30.4 45.8

Liu et al. (2018a) NYUCAD - - 76.1 25.9 93.8 48.9 33.4 31.2 66.1 56.4 31.6 38.5 51.4 30.8 46.2
Liu et al. (2020b) NYUCAD 87.2 91.7 80.8 54.8 92.8 60.3 15.3 43.1 60.7 59.9 37.6 8.1 48.6 31.7 46.6
Li et al. (2020d) NYUCAD 60.6 89.1 56.3 81.3 68.5 54.1 61.8 30.2 45.9 50.7 34.3 42.7 41.9 28.4 49.1

Zhang et al. (2019) NYUCAD 91.3 92.6 82.4 56.2 94.6 58.7 35.1 44.8 68.6 65.3 37.6 35.5 53.1 35.2 53.2
Chen et al. (2020b) NYUCAD 90.6 92.2 84.2 59.7 94.3 64.3 32.6 51.7 72.0 68.7 45.9 19.0 60.5 38.5 55.2
Zhang et al. (2019) NYUCAD+SUNCG 93.4 91.2 85.1 58.1 95.1 60.5 36.8 47.2 69.3 67.7 39.8 37.6 55.4 37.6 55.5

Ours NYUCAD 94.8 90.3 85.5 62.7 94.9 67.9 35.2 52.0 74.8 69.9 47.9 27.9 62.7 35.1 57.4

Table 2: Results of different methods on NYU CAD dataset.

Method mIoU
ResNet-50 42.1

ResNet-50+ cmFM +AFS (Li et al. 2020a) 42.8
ResNet-50+ SA-Gate (Chen et al. 2020c) 43.2

ResNet-50+Fre-Fusion 44.4

Table 3: Frequency Fusion v.s. other RGB-D fusion module.

We obtain an improvement of 4.7% SC IoU and 3.1% SS-
C mIoU compared to the CCP method. It indicates that our
method better exploits the complementary information from
the RGB and depth data for semantic scene completion.

Table 2 shows the results on NYU CAD dataset. Our
method achieves the best performance in both SC and SSC
tasks. We obtain a improvement of 1.3% SC IoU and 2.2%
SSC mIoU compared with (Chen et al. 2020b). Chen et al.
only use NYU CAD as training data which is the same as us.

Qualitative Comparision Figure 4 shows the qualitative
results on NYU dataset. We show the visualization results
of our method, our method without Frequency Fusion Mod-
ule and SSCNet. We find that the semantic scene comple-
tion result is more accurate with the proposed Frequency
Fusion Module. Boosted by Frequency Fusion Module, our
method shows an improvement in intra-class consistency
and a sharper boundary between inter-class. Especially in
the case, those different objects have a similar depth, RGB

data can provide complementary semantic features to differ-
entiate different objects. It can be seen in the first, third, and
fourth rows that different objects have similar depth, RGB
data provide complementary semantic features to differenti-
ate different objects. We observe in the second row that the
table in the bottom left corner has poor lighting conditions.
It is difficult for the network to differentiate the table using
only RGB images. By better utilizing the RGB-D data, our
method can obtain a better semantic scene completion result.

Ablation Study
Effectiveness of Frequency Fusion Module We insert
Frequency Fusion Module into our ResNet-50 backbone to
fuse the RGB and depth data. Here, we insert the Frequen-
cy Fusion Module before the first bottleneck of ResNet-50.
To verify the effectiveness of our Frequency Fusion Mod-
ule, first, we conduct the baseline method that does not use
Frequency Fusion Module. Then, we replace the Frequen-
cy Fusion Module with other state-of-the-art RGB-D fusion
methods used in RGB-D segmentation (Chen et al. 2020c)
and Saliency detection (Li et al. 2020a). The results shown
in Table 3 indicate that our method is effective and outper-
form other state-of-the-art RGB-D fusion methods.

Effectiveness of Frequency Attention We use Frequency
Correlation to correlate RGB-D features boosted by frequen-
cy attention. To verify the effectiveness of frequency atten-
tion, we replace Frequency Correlation with five differen-



(a) HHA input (c) HHAin (d) HHAout (e) RGBin (f) RGBout(b) RGB input

Figure 5: Visualization of depth and RGB features before and after the Frequency Fusion Module. From left to right: (a)
Depth(HHA) input; (b) RGB input; (c) HHA input to Frequency Fusion Module; (d) HHA output to Frequency Fusion Module;
(e) RGB input to Frequency Fusion Module; (f) RGB output to Frequency Fusion Module.

Method Concat Add Prod Channel N-L Ours

mIoU 41.4 43.2 43.3 43.5 43.7 44.4

Table 4: Ablation experiments on RGB-D Frequency Corre-
lation part of Frequency Fusion Module on NYU dataset.

t architectures for comparison. ’Concat’ represents that we
concatenate the RGB and depth features and use convolu-
tion to transform the features into the channel size the same
as a single modality. ’Add’ means that we add RGB and
depth feature to replace the frequency correlation informa-
tion. ’Product’ represents that we multiply RGB features by
depth features. ’Channel’ means that we use channel-wise
attention (Hu, Shen, and Sun 2017) to fuse RGB-D features.
’N-L’ means that we use the non-local operation (Chi et al.
2020; Wang et al. 2018) to replace the frequency correla-
tion information. In the below list, the five architectures we
use Feature Aggregation to obtain depth-assisted RGB fea-
tures and RGB-assisted depth features. Table 4 shows that
Frequency Correlation outperforms other architecture. The
addition, production, channel-wise attention, and non-local
architecture can only promote a little performance. Concate-
nation will lead to relatively worse performance.

Component Analysis on Frequency Fusion Module We
evaluate the effectiveness of the three core components of
Frequency Fusion Module. We ablate each design of Fre-
quency Fusion Module in Table 5. ’Fre-Atten’ represents
that we use Frequency Attention to boost Frequency Cor-
relation. ’Fre-Corr’ represents that we correlate the RGB-
D features in the frequency domain. ’Aggregation’ repre-
sents that we aggregate the correlation information with RG-
B and depth features separately. Experiment results in Table
5 show the effectiveness of Frequency Attention, RGB-D
Frequency Correlation, and Feature Aggregation operations.

How does Frequency Fusion help? We show several
samples of the representative features without and with pro-
cessed by Frequency Fusion Module. It shows how Frequen-
cy Fusion helps semantic scene completion.

We analyze the RGB features on the NYU dataset. In Fig-

Fre-Corr Fre-Atten Aggregation mIoU
× × × 42.1
X × × 43.2
X X × 43.8
X X X 44.4

Table 5: Ablation experiments on Frequency Correlation,
Frequency Attention and Feature Aggregation.

ure 5, the structure is enhanced after the proposed module
and thus reduce the background distraction (see the fifth and
sixth column). Structure information contains more geome-
try information which is vital for semantic scene completion.

Then, we analyze the HHA features on the NYU dataset.
As shown in Figure 5, it can be seen that in the third and
fourth columns the proposed module can recalibrate the
depth features to fit for the RGB feature.

In conclusion, the proposed Frequency Fusion Network
help to find the correlation of RGB-D features and make full
use of RGB-D features to supplement each other.

Conclusion
RGB and depth data provide complementary information for
semantic scene completion. To better utilize the RGB-D da-
ta for semantic scene completion, we propose a novel and
effective method, the Frequency Fusion Network. The pro-
posed method can explicitly model the correlation of RGB-
D features and the correlation is used to guide the RGB-
assisted depth features and the depth-assisted RGB features.
Furthermore, we boost the correlation of RGB-D by fre-
quency attention. It can thus alleviate the challenge of RGB-
D fusion. Experimental results show that our method outper-
forms the state-of-the-art methods on NYU and NYU CAD
datasets. Ablation study and visualization results also show
the contribution of the proposed method.
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