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Abstract—3D point cloud completion is very challenging be-
cause it relies on accurately understanding the complex 3D
shapes (e.g., high-curvature, concave/convex, and hollowed-out
3D shapes) and the unknown & diverse patterns of the partially
available point clouds. In this paper, we propose a novel solution,
i.e., Point-block Carving (PC), for completing the complex 3D
point cloud completion. Given the partial point cloud as the
guidance, we carve a 3D block that contains the uniformly
distributed 3D points, yielding the entire point cloud. We propose
a new network architecture to achieve PC, i.e., CarveNet. This
network conducts the exclusive convolution on each block point,
where the convolutional kernels are trained on the 3D shape data.
CarveNet determines which point should be carved to recover the
complete shapes’ details effectively. Furthermore, we propose a
sensor-aware method for data augmentation, i.e., SensorAug, for
training CarveNet on richer patterns of partial point clouds, thus
enhancing the completion power of the network. The extensive
evaluations on the ShapeNet, ShapNet-55/34 and KITTI datasets
demonstrate the generality of our approach on the partial
point clouds with diverse patterns. On these datasets, CarveNet
successfully outperforms the state-of-the-art methods.

Index Terms—Point Cloud Completion, Shape Completion,
CarveNet, SensorAug.

I. INTRODUCTION

D point cloud has been regarded as one of the best

representations of the 3D object [1], [2]. It is widely
adopted in an array of robotic-relevant applications, such as
the simultaneous localization and mapping (SLAM) [3], place
recognition [4], [5], object detection [6], LiDAR processing
for autonomous driving [7], etc. To achieve the 3D point
cloud of the entire object reasonably well, it is necessary to
use many range finders to capture the geometric data from
different views and conduct the accurate registration among
the captured data. However, the expensive, heavy, and energy-
consuming finders are restricted to only a few affordable
applications in practice. Yet, the sparse 3D points can often
lose the geometric and semantic information, thus leading to
the robotic system’s performance degradation.
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Fig. 1: (a) The intuitive idea and pipeline of our point-block
carving with CarveNet. (b) The point cloud completion by
AtlasNet [8], GRNet [9], and CarveNet on four cases with
three complex shapes: high-curvature (case-1 and case-2),
concave/convex (case-2 and case-3) and hollowed-out (case-3
and case-4).

The emergency of the point cloud completion methods
alleviates the negative effect of the imperfect point cloud on
the downstream applications [10]. The current methods still
face challenges when dealing with complex object shapes,
such as the shapes (see Fig. 1) with high curvatures (e.g.,
1% case), concave/convex structures (e.g., ond gpd 3rd cases),
and hollowed-out structures (e.g., 3"¢ and 4*" cases). The
methods [8], [9], [11]-[17] that focus on some kinds of
complex shapes may lose the generality power for handling the
completion of other shapes. For example, the recent method
GRNet [9] loses some critical structures in the 2™¢ and 4t
cases.

Similarly, although the advanced methods such as AtlasNet
[8] employ the parameterized shape for flexible completion,
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the results lack the critical visual details (e.g., the concave
and hollowed-out structures in 2"% and 3"% cases). Moreover,
given the similar (or even identical) object shapes, the partial
point clouds captured by different sensors may be variant.
This is because the intrinsic performance of the sensors
heavily affects the visual patterns of the partial point clouds.
The variant information can easily mislead the completion
methods, leading to inconsistent results. This post-pressing
concerns especially for real-world applications and calls for
better ways to reduce the impact of the variant sensors on the
point cloud completion.

This paper proposes a brand-new point-block carving (PC).
Given the partial point cloud as the input, our approach
leverages a set of “gravers” to carve the point block to ap-
proximate the underlying object shape as similarly as possible
(see Fig. 1). Intuitively, our carving process can be understood
as the carving of a statue, where the partial shape of the
statue is provided as a hint. Here, our carving process is
done on the 3D block, where we add a set of uniformly
distributed 3D points at the beginning. We also register the
partial point cloud as the 3D block. Next, we use the CarveNet
to generate a graver to process the 3D block and recover the
object shape. This is done by using the graver to remove the
redundant 3D points. Specifically, the graver is defined by the
point-wise convolution whose kernels are learned from the
prior knowledge of the object that captures the geometric and
semantic relationships between the existing and the missing
3D points in the 3D block. The graver propagates the useful
prior information from the partially-given points to the add-in
uniform points, whose present/absent statuses are predicted to
recover the lost part of the point cloud. We only process the
add-in 3D points to reduce the carving complexity effectively.
Note that the features produced by different convolutional
layers of CarveNet contain rich semantic information about
the objects. We use these features to regress new 3D points
that are added to the block for a denser completion result.

Moreover, we propose a new SensorAug for augmenting the
training data. SensorAug works with a similarity loss. Given a
complete point cloud, we assume a LiDAR sensor is randomly
placed to observe the object, leading to some invisible points.
These hidden points are removed from the complete cloud,
producing the partial cloud. Based on the same complete point
cloud, the similarity loss of SensorAug involves more diversity
of the partial point clouds. It allows CarveNet to be trained on
more diverse data to enhance the completion power of complex
shapes.

We evaluate our method on the ShapeNet and KITTI
datasets. With CarveNet, we successfully improve the comple-
tion performance on different benchmarks, even in challenging
cases where the critical points are unavailable for predicting
complex object shapes. Our method helps to achieve better
results than the state-of-the-art methods. Our contribution is
manifold:

o We promote a novel paradigm based on the carving of
the point block for point cloud completion.

o We originally propose CarveNet for point-block engrav-
ing, facilitating better completion of the complex shapes.
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e We propose SensorAug for data augmentation. Senso-
rAug enhances the generality power of the completion
model and helps the model achieve state-of-the-art results
on the public benchmarks.

II. RELATED WORKS

We mainly discuss the deep-learning networks with different
architectures for 3D point cloud completion. We also discuss
other representations of the point cloud.

A. Network Architectures for Point Cloud Completion

The deep network has been used to construct many ad-
vanced point cloud completion methods. The folding-based
and multilayer perceptron (MLP)-based network are two kinds
of famous architectures.

The literature on the folding-based architecture is vast.
FoldingNet [11] folds 2D grid points twice into the target
object’s surface, with the guidance of the feature vectors
extracted by PointNet [18]. However, the complex object shape
significantly increases the difficulty of folding the object at
the cost of expensive computation. In contrast, AtlasNet [§]
separates the object’s surface into small patches. Each patch
is folded individually. MSN [14] employs the expansion loss
to deal with overlapping patches. PCN [12] is equipped with
a two-stage completion. PCN uses MLPs to predict the coarse
shape, which is processed by the deformation of the 2D
grids for the denser completion result. PoinTr [19] formulates
point cloud completion as a set-to-set translation problem and
designs a Transformer architecture to learn and generate point
proxies.

There have been many works based on the MLP-based
architecture. TopNet [13] involves a tree-structure decoder,
where MLP is used to connect the tree nodes. MLP can be
used for producing the multi-scale features [15], [20], [21] to
assist the completion. Several works [20], [22]-[24] explore
the generative adversarial networks (GAN) [25] to construct
MLPs to produce more realistic completion results. PMP-Net
[26] builds a process of point cloud gradual deformation by
learning multi-step offset for each point, achieving point cloud
completion based on existing points in the partial point cloud.
SnowflakeNet [27] uses point splitting and offset to gradually
generate new points, making the original incomplete point
cloud grow progressively. VRCNet [28] designs a shared-
weight dual-branch structure to achieve probabilistic modeling
between incomplete and complete point clouds. SeedFormer
[29] uses Patch Seeds to represent point clouds and designs an
Upsample Transformer to perform coarse-to-fine point cloud
completion.

In this paper, we carve the 3D block to remove the shape-
irrelevant points and use CarveNet to learn from the diversity
of the object shapes. Compared to the folding-based networks,
CarveNet is better, especially in completing complex 3D
shapes, for yielding completion results with richer details and
fewer redundant points. CarveNet is equipped with MLP for
refining the coarse completion results. In contrast to the current
MLP-based architectures, we use different layers of MLPs,
providing the semantic object information at various levels to
produce denser results.
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Fig. 2: (a) The point-block carving method with 3 steps, i.e., point-block construction, point-block engraving via the CarveNet,
and point cloud refinement. (b) Four examples of the cell-wise convolution on different cells of the point-block.

B. Point Cloud Representations

Point cloud representations play a vital role in the related
tasks. A simple point cloud representation is achieved by
directly voxelizing the 3D points. However, these voxeliza-
tion results are sensitive to the quantization effects [30]-
[35]. PointNet learns point-wise features directly from the
raw data of point clouds. PointNet++ [36] group the points
hierarchically to achieve flexible receptive fields in the 3D
space. SO-Net [37] builds a self-organizing map to represent
the spatial relationships of the unordered points. PointCNN
[38] learns the X'-transformation of the input points to a latent
and ordered representation. KPConv [39] uses the pseudo-grid
convolution on the equally distributed spherical points. In the
local feature aggregation method [40], position-pooling is used
for extracting the local features efficiently.

In this work, we resort to the state-of-the-art representation,
i.e., 3D grid-based intermediate representation [9]. The point
cloud can be quickly registered to the regular 3D grid without
losing the critical object structures. CarveNet can process the
3D grid, and the output of CarveNet can be converted back to
the point cloud efficiently.

III. DISCUSSION ON THE POINT-BLOCK CARVING

3D point cloud completion relies on the understanding of
the object’s shape. Intuitively, the object shape captures the
object-level semantic information and the point-level spatial
relationship. The conventional encoder-decoder methods (e.g.,
AtlasNet [8] and GRNet [9]) take input as the partial point
cloud. They map the points to the high-level features, which
are merged to form the object-level semantic information for
determining the locations of the missing points. The objects
that belong to the same category likely have different structural
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details. It means that the spatial relationship between the 3D
points is complex and hardly determined by the object-level
information alone.

Our method for point-block carving takes advantage of both
object-level information and point-level spatial relationships
for completion. We construct the point block containing uni-
formly distributed 3D points and the input partial point cloud.
We calculate the high-level features of the partial point cloud
by the deep network. Rather than using the high-level features
to predict the locations of the missing points, we use these
features to learn the kernels. These kernels propagate the
semantic information between the points and their neighbors
in the point block, thus capturing the underlying spatial
relationship between the points. With more complex spatial
relationships, the redundant points can be removed from the
point block by respecting the details of the object shape.

IV. POINT-BLOCK CARVING FOR SHAPE COMPLETION
A. Overview

We denote the partial point cloud as a set of 3D points, i.e.,
P ={p; € R®|i=1,..,|P|}, where |P| is the number
of 3D points. Based on P, we use the point-block carving to
compute a new set of points @ = {p;, € R | i = 1,...,|Q|}
to represent the complete object. The set Q and the ground-
truth set G = {p; € R? | i = 1, ..., |G|} should be as similar as
possible. We construct the point-block carving (PC) method to
achieve the goal and schematically illustrate the whole process
in Fig. 2, which consists of the point-block construction, the
point-block engraving, and the point cloud refinement.

Step-1: Point-block construction. First, we compute a 3D
block that contains the partial point cloud P (see Step-1
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Fig. 3: Comparison between the completion results by using
the state-of-the-art encoder-decoder method (GRNet) and our
point-block engraving, where our method preserves better
details of the object shape in the completion result.

of Figure 2). The range of the 3D block is denoted as
HANS [mminaxmax]s Yy € [yminaymax]’ and z € [Zminazmax]’ where
Zmin/Ymin/ Zmin (OF Tmax/Ymax/Zmax) represents the possible min-
imization (or maximization) x/y/z-coordinate in the complete
point cloud Q. In practice, the range can be estimated through
a 3D bounding box detection method [41]. Next, we sample
T points uniformly from z/y/z—axis, respectively, achieving
N = T? points distributed uniformly in the 3D block. The
sampled 3D points are used along with the partial point cloud
P to form the point-block B = {p; | i =1,...,|P|+ N}.

Step-2: Point-block engraving. We use the point-block B
to compute the coarse completion C. This is done by using
CarveNet to process the 3D grid-based intermediate represen-
tation of B, where the irrelevant points are removed. CarveNet
considers the visual and spatial properties of each 3D point,
learning the point-wise graver with unique parameters to ma-
nipulate the 3D point. Thus, compared to the current encoder-
decoder network like GRNet [9] that processes different 3D
points by using the identical set of network parameters,
CarveNet preserves better details during the carving process
(see Fig. 3). The 3D grid-based intermediate representation
enables the linear interpolation of the grid-level features for
computing the deep features of the coarse points. It helps to
refine the point cloud finally. In the process of the point-block
engraving, we construct the 3D CNN for computing the graver
parameters that are convoluted with the 3D grid-based interme-
diate representation. These details are more complicated than
other steps. Thus, we expand their explanations in Sec. IV-B.

Step-3: Point cloud refinement. We refine the coarse point
cloud C for achieving the dense point cloud Q. Here, we use
CarveNet to extract features for all points in the coarse point
cloud. The feature of each 3D point is concatenated with the
point’s coordinate, which is passed to four fully connected
layers (with 1792, 2448, 112, and 24 neurons in each layer,
respectively). We use the fully connected layers to compute
a set of point-wise offsets for updating the locations of the
points in the coarse point cloud. The coarse point cloud and
the updated counterpart are merged to form the dense point
cloud Q.

We further propose a novel data augmentation (i.e. Sen-
sorAug) to enhance the generalization of CarveNet across
different 3D shapes and partial point clouds in Sec. IV-C and
introduce the implementation details in Sec. IV-D.
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B. CarveNet for Point-block Engraving

Formulation. Given the point-block B, we construct CarveNet
to compute the point-wise gravers to remove the irrelevant
points. More formally, we perform the exclusive, point-wise
convolution on each 3D point in B as:

Clpi)=BeW)(pi)= >, wilp;—p)f;, (1

P; EN(p:)

where B®WV denotes the point-wise convolution. (B&W)(p;)
is the convolutional output for the point p;. w; defines the
exclusive convolutional parameters for p;. f; is the feature of
p;, and it is set to 1.

The present/absent status of the point p; is determined by
the graver, whose parameters are represented by w; in Eq. (1).
To dynamically adjust the graver for each 3D point, we use a
3D CNN to learn the graver from the partial point cloud P. The
3D CNN outputs a set of graver parameters W = {wy, ..., wy }
for all of the N sampled points in B as:

W = 3DCNN(P). )

We use the 3DCNN along with the 3D grid-based intermediate
representation (see Egs. (3) and (4)) to implement the convolu-
tional operations in Eq. (1) and (2). The alternatives, including
KPConv [39] and PointConv [42], can be used instead of
3DCNN here. We compare different implementation strategies
in the experiment in terms of completion accuracy.

3D grid-based intermediate representation. We choose the
3D grid-based intermediate representation [9]. This represen-
tation is based on the neighboring interpolation. It effectively
avoids any quantization, thus preserving the structural infor-
mation of the object. Its advantages have been evidenced in
the tasks [9], [13], [18], [36], [39] where the point cloud needs
to be processed efficiently.

In the intermediate representation, the gridding layer uses
the differentiable interpolation to map a 3D point cloud to the
gridding representation. Conversely, the gridding reverse maps
a gridding to the 3D point cloud. The feature sampling extracts
the feature of the 3D point based on the grid-level features.
We construct the 3D grid-based intermediate representation
for the point cloud to regularize the unordered points while
explicitly preserving the structural and context information of
these points. In Fig. 2, we illustrate the construction of the
intermediate representation.

We use two gridding layers, which compute the gridding
results of the point-block 5 and the partial P, respectively.
The gridding results are denoted as B € RFXW*M and P
RHXWXM 7 1/ and M denote the resolution of the grid.
Here, we regard the grid as a set of H x W x M cells.

Next, we process the c; in B as:

Cle) = BeW)e)= 3 e

c; €N (c;)

—c))B(c;), (3

where W € REXWxMxK® i g get of 3D cell-wise kernels.
K? indicates the size of a 3D kernel. We use a pre-trained 3D
UNet to process the grid P, achieving the W as:

W = UNet(P). (4)
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Fig. 4: (a) and (b) are different partial point clouds for the
same object. The completion results of (a) and (b) with our
method without the SensorAug (i.e., CarveNet w/o SA) are
inconsistent.

We illustrate 3D UNet in Fig. 2, whose parameters are updated
during the training of CarveNet. As shown in step-2 of the
updated Fig. 2, we improve the performance of CarveNet
by iteratively refining the convolution features of the 3D
grid-based intermediate representation in two rounds. This is
done by feeding the convolution features, computed by the
penultimate deconvolution layer (43 deconv3D-32), back to the
second convolution layer (43 conv3D-64). In these two rounds,
the convolution and deconvolution layers highlighted by the
purple box share the same parameters without increasing the
model complexity. The above refinement is performed on the
convolution features rather than directly on the point cloud,
thus saving the inference time.

We represent the gridding representation of the coarse point
cloud as C = B&W € REXWXMx3 1y Fig. 2(b), we provide
four examples of the cell-wise convolution on different cells
in B. We compute the gridding reverse [9] of C, achieving
the final coarse point cloud C. Note that the spatial resolution
H x W x M of the coarse point cloud C is the same as the
point block B. Thus, the gridding reverse operation can use the
values in the coarse point cloud C to weight the eight vertices’
coordinates of the same index of the cell in the point block 3,
yielding a new 3D point in the point cloud C. This operation
yields H x W x M new points for C.

We extract features from the UNet(P). The features are
propagated to the points in C by resampling w.r.t. the coordi-
nate relationship between C and P (see the “Feature Sampling”
in Fig. 2 (a)). These features are used to refine the coarse point
cloud by MLP.

C. SensorAug for Effective Training

We propose SensorAug for augmenting the training data.
Rather than randomly removing 3D points from the complete
point clouds, we move a virtual sensor in the 3D space lets
the visible points be partial.

SensorAug works with a similarity loss function for super-
vising the training of CarveNet and MLP-based refinement. In
Fig. 5, we illustrate SensorAug for producing the partial point
clouds. We denote a complete point cloud as G. We construct
a restricted 3D space centering at G, where the coordinates of
all of the points in G are normalized to the range [-0.5,0.5].
To observe the object, we randomly put a virtual LiDAR
sensor, whose distance to the center of G is 1. The visible
points within the viewing frustum are used for constructing
the partial point cloud. We repeat SensorAug to produce a set
of partial point clouds (e.g., {P1, P2, P3} in Fig. 5) for each
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0r QP

Fig. 5: The leftmost subfigure illustrates the complete point
cloud and the sensors at different locations. P1, P2, and P3 are
different generated partial point clouds containing the visible
points from different views.

complete point cloud. Note that the production of the partial
point clouds in the ShapeNet dataset [43] is also based on the
virtual LiDAR, which is randomly placed on the surface of
the 3D ball like Fig. 5. We use the virtual LiDAR with the
exact spatial resolution (120x160), focal length (100), and
shooting distance (1) to implement SensorAug, thus yielding
partial point clouds with spatial distributions similar to those
in the ShapeNet dataset.

For each complete point cloud G, we use SensorAug to
generate 7' partial point clouds {P;,...,Pr}. These generated
point clouds are used, along with P given in the training
set, by our method to compute the coarse completion results
{C,Cy,...,Cr} and the refined results {Q, Q1,..., Or}. We
define the loss function below to optimize CarveNet as:

L= Ecomp + aﬁsim- (5)

We minimize the loss function £ to optimize CarveNet.
The loss Lcomp is formulated as:

Ccomp = CD(C7 g) + CD(Q, g); (6)
1
CD(X1, A2) = > min({||lp; — ;I3 | p; € X2})
[ et
+—— > min({|[p: — p;|} | p; € X1}).
| 2| pPiEX>
(7)

In Eq. (7), CD denotes the Chamfer distance [44] between
a pair of point clouds (X7, X). We use the loss Leomp to
penalize the difference between the coarse/refined completion
result and the ground-truth point cloud G.

In Eq. (5), the loss Lg, is defined as:

Loim ZCD (Ci,C) +CD(Q;, Q). ®)

i=1

The loss Lgy, penalizes the difference between the completion
results, which are computed based on different partial point
clouds of the same object. It helps to boost the spatial
consistency between the completions conditioned on different
incomplete counterparts.

Qualitative discussion. In Fig. 2(b), we provide four examples
of the cell-wise convolution on different cells in the grid B. We
train the CarveNet and MLPs on the ShapeNet dataset [43].
We compare the partial point cloud P and the coarse grid C,
where the regions of the 3D space are indicated by the circle
and rectangle, respectively. CarveNet reasonably completes the
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missing grids (see the blue circle and rectangle), removes the
grids beyond the object (see the yellow circle and rectangle),
and preserves the correct details of the partial point cloud (see
the red and pink circles and rectangles).

Yet, there is still much room for improving the robustness of
our method. In Fig. 4, given the different patterns of the partial
point clouds of the identical object, our method produces
inconsistent completion results. One of the significant reasons
that led to the conflicting results is the insufficient learning
from the relationship between the partial and the complete
point clouds. This motivates us to propose SensorAug, which
produces an arbitrary number of partial point clouds for the
same object. These partial point clouds are provided with
diverse patterns. With SensorAug, we can use more pairs of
partial and complete point clouds to augment the training data
and improve the completion power of CarveNet and MLPs.

D. Implementation Details

We use PyTorch 1.6 to implement our method. We use
Adam solver for network optimization. The mini-batch size
is 24/32 for CarveNet with/without SensorAug. The spatial
resolution H x W x M of the 3D grid is empirically set to 323,
643, and 803 in our experiment. We use four NVIDIA 2080Ti
GPUs for training and testing. The initial learning rate is set
to le — 4. It is decayed linearly by half for every 40 epochs.
We set « = 0.5 and T" = 2. In the following experimental
section, we denote our whole method as CarveNet since it is
our main contribution.

V. EXPERIMENTS

A. Experimental Settings

Dataset. We use the ShapeNet [43], ShapeNet-55/34 [19]
and KITTI [45] datasets to evaluate the completion methods.
The ShapeNet dataset consists of 30,974 3D models from 8
categories. There are 28,974/800/1,200 models in the train-
ing/validation/test set. Each model is associated with a pair
of complete and partial point clouds. The complete point
cloud contains 16,384 points uniformly sampled on the object
surface, while the partial one contains 2,048 points. The
ShapeNet-55/34 [19] are derived from the ShapeNet [43]. They
include more categories to capture the diversity of 3D objects
in the real world. In ShapeNet-55 with 55 categories, there are
41,952 3D models for training and 10,518 models for testing.
ShapeNet-34 contains 46,765 models with 34 categories for
training. It provides 3,400/2,305 models for testing on 34
seen/21 unseen categories. Each model contains 8192 points.
The point clouds in KITTI [45] are captured by the LiDAR
sensors. There are 2,400 partial point clouds of cars taken from
426 different timestamps. Each cloud contains 2,048 points.
The ground-truth complete clouds are unavailable in KITTIL.

Baselines. We compare our method with FoldingNet [11],
PCN [12], AltasNet [8], TopNet [13], GRNet [9], PoinTr
[19], PMP-Net [26], SnowflakeNet [27], VRCNet [28], and
SeedFormer [29]. All of these methods are compared fairly
with the same experimental settings. Here, we set the number
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of patches to 16 in AtlasNet [8]. The levels and leaves were
set to 6 and 8 in TopNet [13] for generating 16,384 points.

Evaluation metrics. We use Chamfer distance, F-score and
Consistency as the metrics for the evaluation. We use Chamfer
distance (see Eq. (7)) to measure the similarity between the
completion result Q and the complete point cloud G. Besides,
we follow [46] to measure the completion performance with
F-score. Because the ground-truth point clouds are unavailable
in the KITTI dataset, we use the consistency defined in [9],
[12] to measure the quality of the completion result. We denote
the completion result of i car in j** frame as Q; Suppose
there are N frames for the i*" car. The completion results
of the adjacent frames are used for computing the Chamfer
distances, which are averaged to achieve the consistency as:

N-1
1 . .
Consistency = N1 Z CD(Qj, Qj41) ©)
j=1

A lower Chamfer distance/consistency or a higher F-score
means a better result.

B. Ablation Study

We use the ShapeNet dataset for evaluating the core com-
ponents of CarveNet, i.e., the point-block construction, the
3D point cloud representation and SensorAug. We disable
SensorAug for examining the improvements, which are solely
contributed by the point-block construction and the 3D point
cloud representation, respectively.

Evaluation of the point-block construction methods. In
Table I, we report the average Chamfer distances for all
the completion results on the ShapeNet test set. In row
w/o Construction, we show the carving results on the point
block, which only contains the partial point cloud. Because
many objects have symmetric shapes, a naive solution for the
point-block construction is simply merging the partial point
clouds and its mirror counterpart as an entire point-block
(see the results in the row Symmetric). For our method (i.e.,
uniform sampling), we compare different number of points
(i.e., 113,133 and 162 points).

In the column Coarse CD, we compare different point-block
construction methods in terms of the qualities of the coarse
completion results. Our strategy of uniform point sampling
outperforms other alternatives for point-block construction.
The completion results of the compared methods are visualized

TABLE I: Comparison of using different initial points to
construct the point-block. Coarse/Dense CD represents the
average Chamfer distance (multiplied by 103) between the
coarse/refined results and ground-truth point clouds.

Method ‘ Coarse CD Dense CD
w/o Construction 6.874 0.3376
Symmetric (2048 pts) 1.637 0.2749
Uniform (113 pts) 1.443 0.2074
Uniform (133 pts) 1.463 0.2018
Uniform (162 pts) 1.746 0.2021
Ground Truth Pts 1.239 0.1864




This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3443613

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. , NO., 2022

Ground Truth

w/o Construction

Symmetric Construction Uniform Construction

Fig. 6: The completion results achieved by different point-
block construction methods. The first column shows the input
and the ground truth. The first and second rows of other
columns are coarse completion results (i.e., after point-block
engraving) and dense completion results (i.e., after refinement)
of each method, respectively.

in Fig. 6. By comparing Fig. 6 (a—), we find that the
point-block construction helps the point-block engraving better
recover the 3D points lost in the partial point cloud. We also
evaluate our point cloud refinement, which is used along with
different point-block construction methods. The refinement
produces the dense completion results, whose qualities are
reported in the column Dense CD. Our refinement improves
the completion qualities achieved by different methods.

In Table I, we use different numbers of the sampled points
to construct the point block and compare the completion
qualities. Though more sampled points (e.g., 16%) may provide
more chances for recovering the object details, they signif-
icantly increase the difficulty of carving and lead to worse
completion. Here, we investigate an extreme strategy where the
ground-truth cloud is given for constructing the point-block.
Compared to other methods, using uniform points produces
competitive results. Because the prior object information is
unnecessary, the uniform point sampling for making the point
block can be generalized to completing objects in different
categories.

TABLE II: Ablation study on the 3D representation and
SensorAug. Chamfer distance (CD) is multiplied by 103.

Method | CD

KPConv [39] 0.5025
PointConv [42] 0.4839
3D Grids 0.2018

(a) Results by using different representations.

ShapeNet-34

Method ‘ ShapeNet  ShapeNet-55 34 seen 21 unseen
w/o SensorAug 0.2018 0.88 0.79 1.27
Randomly Drop 0.2572 0.88 0.78 1.27
SensorAug 0.1947 0.86 0.75 1.25

(b) Results with/without SensorAug on ShapeNet and ShapeNet-
55/34.
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TABLE III: Performance on the ShapeNet test set with differ-
ent sizes of inputs.

Grid Size ‘ CD (x103) Running time (ms) # Parameters (M)

323 0.4206 30 6.9
643 0.2018 58 76.8
803 0.2083 154 178.7

Evaluation of the 3D point cloud representations. In our
implementation of CarveNet, We use the 3D grid-based in-
termediate representation for the point-block engraving. The
point-wise convolution in Eq. (1) is a general formulation
for computing the convolution features for 3D points. As
introduced in the 3D grid-based intermediate representation
of Sec. IV-B, we construct the 3D grid-based intermediate
representation, which can be regarded as the regular grid.
Every eight adjacent vertices form a normal cell, which
enables the cell-wise convolution in Eq. (3). The cell-wise
convolution is a specific form of the point-wise convolution
in Eq. (1).

In Table II(a), we compare the 3D grid-based and different
point-based representations and their performances on the
ShapeNet test set. The point-based representation disables the
conventional operation of the 3D convolution, which means the
3D grid-based intermediate representation is not constructed,
and the cell-wise convolution is inapplicable. We resort to
KPConv [39] and PointConv [42], which belong to the family
of the point-based convolution to compute the 3D points’
features, for the comparison with the 3D point-based represen-
tations. The 3D grid-based method produces better results than
the point-based representations. In Table III, we compare the
3D grid-based method with different grid sizes. The running
time is measured as the forwarding time with a batch size of
1. Considering the completion accuracy and the computation,
we select the grid size 64° in our implementation.

CarveNet w/o SA CarveNet w/SA Ground Truth

Input

Fig. 7: Completion results without/with SensorAug for train-
ing. Here, the partial point clouds capture the same object.

Evaluation of SensorAug. We examine the effect of re-
moving SensorAug from the network training and report the
completion result in Table II(b). We successfully degrade
the completion results without SensorAug (see the row w/o
SensorAug). We also compare SensorAug with the random
dropout of points (see the row Randomly Drop) for augmenting
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Input

FoldingNet (2018) PCN (2018) AtlasNet (2018)

TopNet (2019) GRNet (2020) CarveNet(Ours) Ground Truth

Fig. 8: Visualization of the point cloud completion results of different methods (i.e., FoldingNet, PCN, AtlasNet, TopNet,

GRNet, and CarveNet) on the ShapeNet dataset.

124 A ® AtasNet 4 PCN @ VRCNet
v GRNet %* PMP-Net & SeedFormer
m TopNet ¢ PoinTr @ Ours
_. Lo+ + FoldingNet « SnowFlakeNet
S
=1 .
* ~
@ 2
g% & A A A
g | ® *
a i
o ] ’
E 0.6 : ,
< da [l
6 4
041 @ i - ;
02 & ‘

: - -
(40%, 60%] (60%, 80%)] (80%, 100%)

the percentage of valid input points

(0, 40%]

Fig. 9: Sensitivity to the percentage of valid points in the
partial point clouds.

the training data. The random dropout involves inconsistent
object shapes that mislead the network training, thus yielding
lower completion accuracy than the method without augmen-
tation and SensorAug. We visualize the completion results
without/with SensorAug in Fig. 7. Given different partial
point clouds, the network, trained with SensorAug, produces
consistent completion results.
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C. Comparison with State-of-the-Art Methods

Results on ShapeNet. In Table IV, we compare CarveNet
with other methods. We evaluate each method regarding the
average Chamfer distances on eight object categories. The
distances on eight types are averaged again to measure the
method’s overall performance. Our method surpasses other
methods in all 8 categories. We also provide examples of the
completion results in Fig. 8 and Fig. 11, where the complex
shapes like high-curvature and hollowed-out object parts are
correctly recovered.

Results on ShapeNet-55/34. In Table V and Table VI, we
compare CarveNet with other methods on ShapeNet-55/34.
We evaluate each method regarding the Chamfer distances
and F-score with three difficulty degrees. On ShapeNet-55,
our method surpasses other methods in most categories and
all difficulty degrees. On ShapeNet-34, our method surpasses
other methods in 2 of 3 difficulty degrees in 34 seen categories
and all difficulty degrees in 21 unseen categories.

Results on KITTI. Because the ground-truth point clouds
are unavailable, we train CarveNet on the car models in the
ShapeNet training set. The completion results achieved by
CarveNet are evaluated on the KITTI test set. In Table VII, we
report the consistencies achieved by different methods. Again,
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TABLE IV: Results on the ShapeNet. Here, we compute Chamfer distance based on 16,384 points (multiplied by 10%). The
best result of each column is bold-face.

Method ‘ Airplane Cabinet Car Chair Lamp Sofa Table Vessel ‘ Average
FoldingNet [11] 0.4127 0.6837 0.4096 0.8226 0.8475 0.7212 0.6478 0.4778 0.6279
PCN [12] 0.3431 1.0998 0.5513 1.0955 1.1840 1.2163 1.0459 0.6917 0.9035
AtlasNet [8] 0.2503 0.6860 0.3832 0.6912 0.8178 0.8135 0.5971 0.5169 0.5945
TopNet [13] 0.1711 0.5319 0.3565 0.5947 0.5518 0.6735 0.3935 0.3710 0.4555
GRNet [9] 0.2840 0.5966 0.3347 0.5353 0.4486 0.7456 0.5066 0.3011 0.4691
PoinTr [19] 0.0820 0.3513 0.2329 0.2656 0.2104 0.3613 0.2118 0.1734 0.2361
PMP-Net [26] 0.1205 0.4203 0.2867 0.3552 0.2158 0.4231 0.2920 0.1897 0.2879
SnowflakeNet [27] 0.0934 0.3593 0.2330 0.2918 0.2306 0.3963 0.2191 0.1704 0.2492
VRCNet [28] 0.2347 0.6638 0.4366 0.5737 0.451 0.7338 0.4294 0.3586 0.4852
SeedFormer [29] 0.0663 0.3174 0.2182 0.2034 0.1476 0.3478 0.1551 0.1398 0.1995
CarveNet (Ours) 0.0654 0.3127 0.2036 0.2011 0.1443 0.3383 0.1529 0.1392 0.1947

TABLE V: Results on the ShapeNet-55. Here, we compute Chamfer distance based on 8192 points (multiplied by 103).

Method ‘ Table Chair Airplane Car Sofa Birdhouse Bag Remote Keyboard Rocket ‘ CD-S CD-M CD-H ‘ CD-Avg Fl

FoldingNet [11] 2,53  2.81 1.43 1.98 248 4.71 279 144 1.24 1.48 | 2.67 266 4.05 312 0.082
PCN [12] 213 229 1.02 1.85 2.06 4.50 286 1.33 0.89 132 | 1.94 196 4.08 2,66  0.133
TopNet [13] 221 253 1.14 218 236 4.83 293 149 0.95 1.32 | 226 2.16 4.3 291 0.126
GRNet [9] 1.63 1.88 1.02 164 1.72 2.97 206 1.09 0.89 1.03 135 171 285 1.97  0.238
PoinTr [19] 0.81 0.95 044 091 0.79 1.86 093 053 0.38 0.57 | 0.58 0.88 1.79 1.09  0.464
PMP-Net [26] 130 141 0.61 1.39 1.31 2.49 1.67 0.74 0.51 065 | 072 139 3.38 1.83 0453
SnowflakeNet [27] | 0.98 1.12 0.54 098 1.02 1.93 1.08  0.57 0.48 061 | 070 1.06 1.96 1.24  0.398
VRCNet [28] 1.25 144 0.57 1.13 1.20 2.36 1.39  0.71 0.50 065 | 086 1.53 298 1.79  0.463
SeedFormer [29] 0.72  0.81 040 089 0.71 1.63 090 045 0.41 0.31 050 077 149 092 0472
CarveNet (Ours) | 0.71 0.78 036 091 0.68 1.60 0.87 041 0.45 029 | 048 0.74 143 0.88 0.486

TABLE VI: Results on the ShapeNet-34. Here, we compute Chamfer distance based on 8192 points (multiplied by 10?).

‘ 34 seen categories ‘

21 unseen categories

Method | cD-s CD-M CD-H | CD-Avg FI | CD-S CD-M CD-H | CD-Avg F1

FoldingNet [11] 1.86 1.81 3.38 2.35 0.139 2.76 2.74 5.36 3.62 0.095
PCN [12] 1.87 1.81 297 2.22 0.154 3.17 3.08 5.29 3.85 0.101
TopNet [13] 1.77 1.61 3.54 231 0.171 2.62 243 5.44 3.50 0.121
GRNet [9] 1.26 1.39 2.57 1.74 0.251 1.85 225 4.87 2.99 0.216
PoinTr [19] 0.76 1.05 1.88 123 0.421 1.04 1.67 3.44 2.05 0.384
PMP-Net [26] 0.66 1.22 2.83 1.57 0.442 0.85 1.73 4.04 2.21 0.407
SnowflakeNet [27] 0.51 0.71 1.21 0.81 0.414 0.76 1.23 2.55 1.51 0.372
VRCNet [28] 0.69 1.12 2.14 132 0.433 1.13 1.96 420 243 0.397
SeedFormer [29] 0.48 0.70 1.30 0.83 0.452 0.61 1.07 235 1.34 0.402
CarveNet (Ours) 0.46 0.67 1.24 0.79 0.465 0.57 1.00 2.23 1.27 0.413

TABLE VII: Consistency on KITTL datasets. We provide examples of the completion results on the

KITTI dataset in Fig. 10.

Method ‘ Consistency (x10%)

llj(élf; r;“fl;]et [t g:izgg Sensitivity to the partial point clouds. In the default setting,
AtlasNet [§] 03580 each partial point cloud contains 2,048 points. Generally, the
TopNet [13] 0.2179 fewer valid input points, the more difficult its completion
GRNet [9] 0.2036 can be. We conduct the below experiment to evaluate the
PoinTr [19] 0.1548 robustness of different methods by comparing the average
PMP-Net [26] 0.2074 CD under different ratios of valid points. Here, we place
SnowflakeNet [27] 0.1619 each partial point cloud into 64 x 64 x 64 grids, where we
VRCNet [28] 0.1733 define the percentage of valid input points as the percentage
SeedFormer [29] 0.1496 of non-zero grids. We divide the partial point clouds with
CarveNet (Ours) 0.1437

different percentages (i.e., 0 ~ 40%, 40 ~ 60%, 60 ~ 80%,
and 80 ~ 100%) of valid points into the ranges plotted in

CarveNet outperforms other methods. It also demonstrates that
knowledge learned by CarveNet can be generalized to different
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Fig. 9. Even when the percentage of valid points is tiny (e.g.,
0 ~ 40%), CarveNet produces a smaller average CD than
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Fig. 10: Visualization of completion results on KITTI. (a) Completion results through different methods. Completion results
of our method projecting on the image with (b) for partial point clouds and (c) for the completed results.
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Fig. 11: Visualization of the point cloud completion results of different methods (i.e., PoinTr, PMP-Net, SnowflakeNet, VRCNet,

SeedFormer, and CarveNet) on the ShapeNet dataset.

other methods, thus demonstrating its robustness.

VI. CONCLUSION

The complexity of 3D point cloud completion stems from
the diversity of the 3D object shapes. In this paper, we have
proposed an effective operation, the point-block engraving,
for the completion task. We use point-block engraving to
manipulate the 3D grid-based representation of the object,
which is shape-agnostic, for removing the redundant points
and recovering the essential details of the object. Moreover,
we propose SensorAug to augment the training data, allowing
the completion network to learn from more diverse object

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

shapes. The evaluation of the public completion benchmarks
demonstrates the effectiveness of our approach.
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