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Abstract

In this Appendix, we present the derivations
of procedures outlined in Algorithm 1, and
discuss the performance of formulating f;(R")
as Tr(W,RY) with W; € RE*Minstead of
TRb
ay t.

1. Derivations of Algorithm 1

In the manuscript, we have presented the derivations of
sampling the true label z;, as well as its corresponding aug-
mented variable {rit}t[(;ll. In this supplementary file, we
should discuss the derivations of sampling other model pa-
rameters, and the gradient method employed to optimize
the K — 1 decision boundaries and update prior distribu-
tions.

For the confusion matrices, A. Given the prior distribu-
tion over the k-th row of A7, which is a conjugate Dirichlet
distribution, we can get its conditional distribution also fol-
lows a Dirichlet distribution, and can be reformulated a,

N
Aj g ~ D(Ajgla; + ZR al(

i=1

a=k). (1)

For the items’ difficulties, w. The posterior distribution
of w; can be derived in a similar way as A7, which is also
Dirichlet distribution as,

w,i ~ D(wﬂﬁi + 1I(z; = k)). 2)

For a;,b;,Vt € [K — 1]. Given the updating procedures
of a, the updating procedures associated with b, can be
achieved by altering the notations. Thus, we only discuss
the updating of a; here. Given the estimations of all other
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parameters, we can rewrite the objective function with re-
spect to a; as follows,

L(as) < —E,In¢(z,v|R) + \raf a;b} b
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solution of a; as follows
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where (f(z)) = [ q(z
samphng steps

Rib b R
4)
sgnt(zi)>Ribt),

x)dz can be estimated during the

For the updating of prior distributions. Given the up-
dating procedures of «, the updating procedures associated
with 3 can be achieved by altering the notations. Thus, we
only discuss the updating of « here. By fixing all other pa-
rameters, we can obtain an objective function with respect
to « as follows,

L(a;) =K(InT(Ka;) — KInT'(a;))
+> (0= 1)Eq(a) In A, )
keod

Thus, we have the gradient 25 (aﬂ)

as
aggjj) = K2 ((Kay) = ¥(ag)) + 3 _(In AL),

k.d

where ¢ (-) is a digamma function. Thus, we can minimize
L by setting
0L(aj)

aj = aj =15 ==, (6)
J

with 7 as a learning rate.

Thus, we can get the procedures outlined in Algorithm 1.
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Table 1. Errors in predicting the latent labels on the Web dataset.

Ordinal Ours Ours
Dataset F(RY) = TRy, fy(RY) = Tr(W,RY) G-CrowdSVM  Entropy(O) MV-DS MV

lo | 0.032210.0013 0.1153+0.0027 0.0799+0.0026 0.1040 0.1574  0.2693
Web li | 0.0369+0.0032 0.143240.0015 0.0940+0.0057 0.1173 0.2149  0.4251
ly | 0.2153£0.0019 0.4594+0.0062 0.3629+0.0044 0.3816 0.5358  0.9247

2. Discussions on Setting f;(R’) = Tr(W,R') and b,, only M + K. More free parameters may face an

) . overfitting problem.
In the manuscript, we assume f;(R’) = al Rib, for t €

[K — 1], which is inspired by the rank-1 formulas used in
MYV and WMV. However, one may wonder why confining
to such rank-1 measurements. In this part, we give the opti-
mization of the separating width with f;(R’) = Tr(W,R?),
and present the experiments on the Web dataset in compar-
ison with f;(R?) = al R'b,.

For W;,Vt € [K — 1]. Let vec(-) denote a linear trans-
formation which converts the matrix into a column_vec-

tor. For example, for the 2 X 2 matrix B = “ dl’ its
a

vectorization is vec(B) = IC) Then, we can rewrite
d

f+(R?) = vec(W;)Tvec(R?), leading to an objective func-
tion with respect to W, as follows,

E(Wf) x —EgIn¢(z,7|R) + A\ [[Wi

o ZEq2 (% + AaGin)? + Agvee(W3) T vec(W),

where (;; = 1 — sgn,(2;)vec(W;)Tvec(R?). Thus, by set-
: OL(W)

Ung Fvecn,)
W, as follows,

N
=2\ + Z
2

N
vee(Wh) = S5t (Y~ (%e + sgnt(zi)>vec(Ri)).
i=1

(7

= 0, we can obtain the optimal solution of

vec (R")vec(R)T,

Other procedures are similar with the ones outlined in Al-
gorithm 1.

To evaluate the performance of formulating f;(R!) =
Tr(W; R"), we implement its algorithm on the Web dataset.
Its comparisons with other competitive ones can be found
in Table 1, which shows that using higher rank measure-
ments actually makes the performance worse. It can be
explained that each W; introduces M K free parameters,
which is more than the free parameters introduced by a;



