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Abstract

In this Appendix, we present the derivations
of procedures outlined in Algorithm 1, and
discuss the performance of formulating ft(R

i)
as Tr(WtR

i) with Wt ∈ RK×M , instead of
aTt R

ibt.

1. Derivations of Algorithm 1
In the manuscript, we have presented the derivations of
sampling the true label zi, as well as its corresponding aug-
mented variable {rit}K−1t=1 . In this supplementary file, we
should discuss the derivations of sampling other model pa-
rameters, and the gradient method employed to optimize
the K − 1 decision boundaries and update prior distribu-
tions.

For the confusion matrices, A. Given the prior distribu-
tion over the k-th row of Aj , which is a conjugate Dirichlet
distribution, we can get its conditional distribution also fol-
lows a Dirichlet distribution, and can be reformulated a,

Ajkd ∼ D(Ajkd|αj +

N∑
i=1

RijdI(zi = k)). (1)

For the items’ difficulties, ω. The posterior distribution
of ωi can be derived in a similar way as Aj , which is also
Dirichlet distribution as,

ωik ∼ D(ωik|βi + I(zi = k)). (2)

For at, bt,∀t ∈ [K − 1]. Given the updating procedures
of at, the updating procedures associated with bt can be
achieved by altering the notations. Thus, we only discuss
the updating of at here. Given the estimations of all other
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parameters, we can rewrite the objective function with re-
spect to at as follows,

L(at) ∝ −Eq lnφ(z, γ|R) + λ1a
T
t atb

T
t bt

∝ −
N∑
i=1

Eq
1

2γit
(γi + λ2ζit)

2 + λ1a
T
t atb

T
t bt.

(3)

Thus, by setting ∂L(at)
∂at

= 0, we can obtain the optimal
solution of at as follows,

Σat = 2λ1‖bt‖22I +

N∑
i=1

λ22
〈γit〉

Ribtb
T
t R

iT ,

at = Σ−1at (

N∑
i=1

(λ2 +
λ22
〈γit〉

)〈sgnt(zi)〉Ribt),

(4)

where 〈f(x)〉 =
∫
q(x)f(x)dx can be estimated during the

sampling steps.

For the updating of prior distributions. Given the up-
dating procedures of α, the updating procedures associated
with β can be achieved by altering the notations. Thus, we
only discuss the updating of α here. By fixing all other pa-
rameters, we can obtain an objective function with respect
to α as follows,

L(αj) =K(ln Γ(Kαj)−K ln Γ(αj))

+
∑
k,d

(α− 1)Eq(A) lnAjkd.
(5)

Thus, we have the gradient ∂L(αj)
∂αj

as

∂L(αj)

∂αj
= K2(ψ(Kαj)− ψ(αj)) +

∑
k,d

〈lnAjkd〉,

where ψ(·) is a digamma function. Thus, we can minimize
L by setting

αj = αj − η
∂L(αj)

∂αj
, (6)

with η as a learning rate.

Thus, we can get the procedures outlined in Algorithm 1.
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Table 1. Errors in predicting the latent labels on the Web dataset.
Ordinal
Dataset

Ours
ft(R

i) = aTt R
ibt

Ours
ft(R

i) = Tr(WtR
i)

G-CrowdSVM Entropy(O) MV-DS MV

Web
l0 0.0322±0.0013 0.1153±0.0027 0.0799±0.0026 0.1040 0.1574 0.2693
l1 0.0369±0.0032 0.1432±0.0015 0.0940±0.0057 0.1173 0.2149 0.4251
l2 0.2153±0.0019 0.4594±0.0062 0.3629±0.0044 0.3816 0.5358 0.9247

2. Discussions on Setting ft(R
i) = Tr(WtR

i)

In the manuscript, we assume ft(Ri) = aTt R
ibt for t ∈

[K − 1], which is inspired by the rank-1 formulas used in
MV and WMV. However, one may wonder why confining
to such rank-1 measurements. In this part, we give the opti-
mization of the separating width with ft(Ri) = Tr(WtR

i),
and present the experiments on the Web dataset in compar-
ison with ft(Ri) = aTt R

ibt.

For Wt,∀t ∈ [K − 1]. Let vec(·) denote a linear trans-
formation which converts the matrix into a column vec-

tor. For example, for the 2 × 2 matrix B =

[
a b
c d

]
, its

vectorization is vec(B) =


a
c
b
d

. Then, we can rewrite

ft(R
i) = vec(Wt)

T vec(Ri), leading to an objective func-
tion with respect to Wt as follows,

L(Wt) ∝ −Eq lnφ(z, γ|R) + λ1‖Wt‖F

∝
N∑
i=1

Eq
1

2γit
(γi + λ2ζit)

2 + λ1vec(Wt)
T vec(Wt),

where ζit = 1 − sgnt(zi)vec(Wt)
T vec(Ri). Thus, by set-

ting ∂L(Wt)
∂vec(Wt)

= 0, we can obtain the optimal solution of
Wt as follows,

ΠWt = 2λ1I +

N∑
i=1

λ22
〈γit〉

vec(Ri)vec(Ri)T ,

vec(Wt) = Σ−1Wt
(

N∑
i=1

(λ2 +
λ22
〈γit〉

)〈sgnt(zi)〉vec(Ri)).

(7)

Other procedures are similar with the ones outlined in Al-
gorithm 1.

To evaluate the performance of formulating ft(R
i) =

Tr(WtR
i), we implement its algorithm on the Web dataset.

Its comparisons with other competitive ones can be found
in Table 1, which shows that using higher rank measure-
ments actually makes the performance worse. It can be
explained that each Wt introduces MK free parameters,
which is more than the free parameters introduced by at

and bt, only M + K. More free parameters may face an
overfitting problem.


